Sort by:
Page 34 of 1611610 results

A Deep Learning Approach for Nerve Injury Classification in Brachial Plexopathies Using Magnetic Resonance Neurography with Modified Hiking Optimization Algorithm.

Dahou A, Elaziz MA, Khattap MG, Hassan HGEMA

pubmed logopapersJul 1 2025
Brachial plexopathies (BPs) encompass a complex spectrum of nerve injuries affecting motor and sensory function in the upper extremities. Diagnosis is challenging due to the intricate anatomy and symptom overlap with other neuropathies. Magnetic Resonance Neurography (MRN) provides advanced imaging but requires specialized interpretation. This study proposes an AI-based framework that combines deep learning (DL) with the modified Hiking Optimization Algorithm (MHOA) enhanced by a Comprehensive Learning (CL) technique to improve the classification of nerve injuries (neuropraxia, axonotmesis, neurotmesis) using MRN data. The framework utilizes MobileNetV4 for feature extraction and MHOA for optimized feature selection across different MRI sequences (STIR, T2, T1, and DWI). A dataset of 39 patients diagnosed with BP was used. The framework classifies injuries based on Seddon's criteria, distinguishing between normal and abnormal conditions as well as injury severity. The model achieved excellent performance, with 1.0000 accuracy in distinguishing normal from abnormal conditions using STIR and T2 sequences. For injury severity classification, accuracy was 0.9820 in STIR, outperforming the original HOA and other metaheuristic algorithms. Additionally, high classification accuracy (0.9667) was observed in DWI. The proposed framework outperformed traditional methods and demonstrated high sensitivity and specificity. The proposed AI-based framework significantly improves the diagnosis of BP by accurately classifying nerve injury types. By integrating DL and optimization techniques, it reduces diagnostic variability, making it a valuable tool for clinical settings with limited specialized neuroimaging expertise. This framework has the potential to enhance clinical decision-making and optimize patient outcomes through precise and timely diagnoses.

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Li Y, Liu S, Zhang Y, Zhang M, Jiang C, Ni M, Jin D, Qian Z, Wang J, Pan X, Yuan H

pubmed logopapersJul 1 2025
To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening. This study involved 987 patients who underwent 80 kV chest and 120 kV lumbar CT from January to July 2024. Patients were collected from six CT scanners and divided into the training, validation, and test sets 1 and 2 (561: 177: 112: 137). Four convolutional neural networks (CNNs) were employed for automated segmentation (3D VB-Net and SCN), region of interest extraction (3D VB-Net), and BMD calculation (DenseNet and ResNet) of the target vertebrae (T12-L2). The BMD values of T12-L2 were obtained using 80 and 120 kV quantitative CT (QCT), the latter serving as the standard reference. Linear regression and Bland-Altman analyses were used to compare BMD values between 120 kV QCT and 80 kV CNNs, and between 120 kV QCT and 80 kV QCT. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of the 80 kV CNNs and 80 kV QCT for osteoporosis and low BMD from normal BMD. Linear regression and Bland-ltman analyses revealed a stronger correlation (R<sup>2</sup>=0.991-0.998 and 0.990-0.991, P<0.001) and better agreement (mean error, -1.36 to 1.62 and 1.72 to 2.27 mg/cm<sup>3</sup>; 95% limits of agreement, -9.73 to 7.01 and -5.71 to 10.19mg/cm<sup>3</sup>) for BMD between 120 kV QCT and 80 kV CNNs than between 120 kV QCT and 80 kV QCT. The areas under the curve of the 80 kV CNNs and 80 kV QCT in detecting osteoporosis and low BMD were 0.997-1.000 and 0.997-0.998, and 0.998-1.000 and 0.997, respectively. The DL method could achieve fully automated BMD calculation for opportunistic osteoporosis screening with high accuracy using ultralow-voltage 80 kV chest CT performed for lung cancer screening.

Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery.

Feng E, Jayasuriya NM, Nathani KR, Katsos K, Machlab LA, Johnson GW, Freedman BA, Bydon M

pubmed logopapersJul 1 2025
This study aimed to develop an artificial intelligence (AI) model for automatically detecting Hounsfield unit (HU) values at the L1 vertebra in preoperative thoracolumbar CT scans. This model serves as a screening tool for osteoporosis in patients undergoing spine surgery, offering an alternative to traditional bone mineral density measurement methods like dual-energy x-ray absorptiometry. The authors utilized two CT scan datasets, comprising 501 images, which were split into training, validation, and test subsets. The nnU-Net framework was used for segmentation, followed by an algorithm to calculate HU values from the L1 vertebra. The model's performance was validated against manual HU calculations by expert raters on 56 CT scans. Statistical measures included the Dice coefficient, Pearson correlation coefficient, intraclass correlation coefficient (ICC), and Bland-Altman plots to assess the agreement between AI and human-derived HU measurements. The AI model achieved a high Dice coefficient of 0.91 for vertebral segmentation. The Pearson correlation coefficient between AI-derived HU and human-derived HU values was 0.96, indicating strong agreement. ICC values for interrater reliability were 0.95 and 0.94 for raters 1 and 2, respectively. The mean difference between AI and human HU values was 7.0 HU, with limits of agreement ranging from -21.1 to 35.2 HU. A paired t-test showed no significant difference between AI and human measurements (p = 0.21). The AI model demonstrated strong agreement with human experts in measuring HU values, validating its potential as a reliable tool for automated osteoporosis screening in spine surgery patients. This approach can enhance preoperative risk assessment and perioperative bone health optimization. Future research should focus on external validation and inclusion of diverse patient demographics to ensure broader applicability.

Artificial Intelligence in CT Angiography for the Detection of Coronary Artery Stenosis and Calcified Plaque: A Systematic Review and Meta-analysis.

Du M, He S, Liu J, Yuan L

pubmed logopapersJul 1 2025
We aimed to evaluate the diagnostic performance of artificial intelligence (AI) in detecting coronary artery stenosis and calcified plaque on CT angiography (CTA), comparing its diagnostic performance with that of radiologists. A thorough search of the literature was performed using PubMed, Web of Science, and Embase, focusing on studies published until October 2024. Studies were included if they evaluated AI models in detecting coronary artery stenosis and calcified plaque on CTA. A bivariate random-effects model was employed to determine combined sensitivity and specificity. Study heterogeneity was assessed using I<sup>2</sup> statistics. The risk of bias was assessed using the revised quality assessment of diagnostic accuracy studies-2 tool, and the evidence level was graded using the Grading of Recommendations Assessment, Development and Evalutiuon (GRADE) system. Out of 1071 initially identified studies, 17 studies with 5560 patients and images were ultimately included for the final analysis. For coronary artery stenosis ≥50%, AI showed a sensitivity of 0.92 (95% CI: 0.88-0.95), specificity of 0.87 (95% CI: 0.80-0.92), and AUC of 0.96 (95% CI: 0.94-0.97), outperforming radiologists with sensitivity of 0.85 (95% CI: 0.67-0.94), specificity of 0.84 (95% CI: 0.62-0.94), and AUC of 0.91 (95% CI: 0.89-0.93). For stenosis ≥70%, AI achieved a sensitivity of 0.88 (95% CI: 0.70-0.96), specificity of 0.96 (95% CI: 0.90-0.99), and AUC of 0.98 (95% CI: 0.96-0.99). In calcified plaque detection, AI demonstrated a sensitivity of 0.93 (95% CI: 0.84-0.97), specificity of 0.94 (95% CI: 0.88-0.96), and AUC of 0.98 (95% CI: 0.96-0.99)." AI-based CT demonstrated superior diagnostic performance compared to clinicians in identifying ≥50% stenosis in coronary arteries and showed excellent diagnostic performance in recognizing ≥70% coronary artery stenosis and calcified plaque. However, limitations include retrospective study designs and heterogeneity in CTA technologies. Further external validation through prospective, multicenter trials is required to confirm these findings. The original findings of this research are included in the article. For additional inquiries, please contact the corresponding authors.

Machine-Learning-Based Computed Tomography Radiomics Regression Model for Predicting Pulmonary Function.

Wang W, Sun Y, Wu R, Jin L, Shi Z, Tuersun B, Yang S, Li M

pubmed logopapersJul 1 2025
Chest computed tomography (CT) radiomics can be utilized for categorical predictions; however, models predicting pulmonary function indices directly are lacking. This study aimed to develop machine-learning-based regression models to predict pulmonary function using chest CT radiomics. This retrospective study enrolled patients who underwent chest CT and pulmonary function tests between January 2018 and April 2024. Machine-learning regression models were constructed and validated to predict pulmonary function indices, including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV<sub>1</sub>). The models incorporated radiomics of the whole lung and clinical features. Model performance was evaluated using mean absolute error, mean squared error, root mean squared error, concordance correlation coefficient (CCC), and R-squared (R<sup>2</sup>) value and compared to spirometry results. Individual explanations of the models' decisions were analyzed using an explainable approach based on SHapley Additive exPlanations. In total, 1585 cases were included in the analysis, with 102 of them being external cases. Across the training, validation, test, and external test sets, the combined model consistently achieved the best performance in the regression task for predicting FVC (e.g. external test set: CCC, 0.745 [95% confidence interval 0.642-0.818]; R<sup>2</sup>, 0.601 [0.453-0.707]) and FEV<sub>1</sub> (e.g. external test set: CCC, 0.744 [0.633-0.824]; R<sup>2</sup>, 0.527 [0.298-0.675]). Age, sex, and emphysema were important factors for both FVC and FEV<sub>1</sub>, while distinct radiomics features contributed to each. Whole-lung-based radiomics features can be used to construct regression models to improve pulmonary function prediction.

Machine Learning-Based Diagnostic Prediction Model Using T1-Weighted Striatal Magnetic Resonance Imaging for Early-Stage Parkinson's Disease Detection.

Accioly ARM, Menezes VO, Calixto LH, Bispo DPCF, Lachmann M, Mourato FA, Machado MAD, Diniz PRB

pubmed logopapersJul 1 2025
Diagnosing Parkinson's disease (PD) typically relies on clinical evaluations, often detecting it in advanced stages. Recently, artificial intelligence has increasingly been applied to imaging for neurodegenerative disorders. This study aims to develop a diagnostic prediction model using T1-weighted magnetic resonance imaging (T1-MRI) data from the caudate and putamen in individuals with early-stage PD. This retrospective case-control study included 69 early-stage PD patients and 22 controls, recruited through the Parkinson's Progression Markers Initiative. T1-MRI scans were acquired using a 3-tesla system. 432 radiomic features were extracted from images of the segmented caudate and putâmen in an automated way. Feature selection was performed using Pearson's correlation and recursive feature elimination to identify the most relevant variables. Three machine learning algorithms-random forest (RF), support vector machine and logistic regression-were evaluated for diagnostic prediction effectiveness using a cross-validation method. The Shapley Additive Explanations technique identified the most significant features distinguishing between the groups. The metrics used to evaluate the performance were discrimination, expressed in area under the ROC curve (AUC), sensitivity and specificity; and calibration, expressed as accuracy. The RF algorithm showed superior performance with an average accuracy of 92.85%, precision of 100.00%, sensitivity of 86.66%, specificity of 96.65% and AUC of 0.93. The three most influential features were contrast, elongation, and gray-level non-uniformity, all from the putamen. Machine learning-based models can differentiate early-stage PD from controls using T1-weighted MRI radiomic features.

External Validation of an Artificial Intelligence Algorithm Using Biparametric MRI and Its Simulated Integration with Conventional PI-RADS for Prostate Cancer Detection.

Belue MJ, Mukhtar V, Ram R, Gokden N, Jose J, Massey JL, Biben E, Buddha S, Langford T, Shah S, Harmon SA, Turkbey B, Aydin AM

pubmed logopapersJul 1 2025
Prostate imaging reporting and data systems (PI-RADS) experiences considerable variability in inter-reader performance. Artificial Intelligence (AI) algorithms were suggested to provide comparable performance to PI-RADS for assessing prostate cancer (PCa) risk, albeit tested in highly selected cohorts. This study aimed to assess an AI algorithm for PCa detection in a clinical practice setting and simulate integration of the AI model with PI-RADS for assessment of indeterminate PI-RADS 3 lesions. This retrospective cohort study externally validated a biparametric MRI-based AI model for PCa detection in a consecutive cohort of patients who underwent prostate MRI and subsequently targeted and systematic prostate biopsy at a urology clinic between January 2022 and March 2024. Radiologist interpretations followed PI-RADS v2.1, and biopsies were conducted per PI-RADS scores. The previously developed AI model provided lesion segmentations and cancer probability maps which were compared to biopsy results. Additionally, we conducted a simulation to adjust biopsy thresholds for index PI-RADS category 3 studies, where AI predictions within these studies upgraded them to PI-RADS category 4. Among 144 patients with a median age of 70 years and PSA density of 0.17ng/mL/cc, AI's sensitivity for detection of PCa (86.6%) and clinically significant PCa (csPCa, 88.4%) was comparable to radiologists (85.7%, p=0.84, and 89.5%, p=0.80, respectively). The simulation combining radiologist and AI evaluations improved clinically significant PCa sensitivity by 5.8% (p=0.025). The combination of AI, PI-RADS and PSA density provided the best diagnostic performance for csPCa (area under the curve [AUC]=0.76). The AI algorithm demonstrated comparable PCa detection rates to PI-RADS. The combination of AI with radiologist interpretation improved sensitivity and could be instrumental in assessment of low-risk and indeterminate PI-RADS lesions. The role of AI in PCa screening remains to be further elucidated.

Effects of Renal Function on the Multimodal Brain Networks Affecting Mild Cognitive Impairment Converters in End-Stage Renal Disease.

Yu Z, Du Y, Pang H, Li X, Liu Y, Bu S, Wang J, Zhao M, Ren Z, Li X, Yao L

pubmed logopapersJul 1 2025
Cognitive decline is common in End-Stage Renal Disease (ESRD) patients, yet its neural mechanisms are poorly understood. This study investigates structural and functional brain network reconfiguration in ESRD patients transitioning to Mild Cognitive Impairment (MCI) and evaluates its potential for predicting MCI risk. We enrolled 90 ESRD patients with 2-year follow-up, categorized as MCI converters (MCI_C, n=48) and non-converters (MCI_NC, n=42). Brain networks were constructed using baseline rs-fMRI and high angular resolution diffusion imaging, focusing on regional structural-functional coupling (SFC). A Support Vector Machine (SVM) model was used to identify brain regions associated with cognitive decline. Mediation analysis was conducted to explore the relationship between kidney function, brain network reconfiguration, and cognition. MCI_C patients showed decreased network efficiency in the structural network and compensatory changes in the functional network. Machine learning models using multimodal network features predicted MCI with high accuracy (AUC=0.928 for training set, AUC=0.903 for test set). SHAP analysis indicated that reduced hippocampal SFC was the most significant predictor of MCI_C. Mediation analysis revealed that altered brain network topology, particularly hippocampal SFC, mediated the relationship between kidney dysfunction and cognitive decline. This study provides new insights into the link between kidney function and cognition, offering potential clinical applications for structural and functional MRI biomarkers.

Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.

Biswas S, Chohan DP, Wankhede M, Rodrigues J, Bhat G, Mathew S, Mahato KK

pubmed logopapersJul 1 2025
Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.

Interpretable Machine Learning Radiomics Model Predicts 5-year Recurrence-Free Survival in Non-metastatic Clear Cell Renal Cell Carcinoma: A Multicenter and Retrospective Cohort Study.

Zhang J, Huang W, Li Y, Zhang X, Chen Y, Chen S, Ming Q, Jiang Q, Xv Y

pubmed logopapersJul 1 2025
To develop and validate a computed tomography (CT) radiomics-based interpretable machine learning (ML) model for predicting 5-year recurrence-free survival (RFS) in non-metastatic clear cell renal cell carcinoma (ccRCC). 559 patients with non-metastatic ccRCCs were retrospectively enrolled from eight independent institutes between March 2013 and January 2019, and were assigned to the primary set (n=271), external test set 1 (n=216), and external test set 2 (n=72). 1316 Radiomics features were extracted via "Pyradiomics." The least absolute shrinkage and selection operator algorithm was used for feature selection and Rad-Score construction. Patients were stratified into low and high 5-year recurrence risk groups based on Rad-Score, followed by Kaplan-Meier analyses. Five ML models integrating Rad-Score and clinicopathological risk factors were compared. Models' performances were evaluated via the discrimination, calibration, and decision curve analysis. The most robust ML model was interpreted using the SHapley Additive exPlanation (SHAP) method. 13 radiomic features were filtered to produce the Rad-Score, which predicted 5-year RFS with area under the receiver operating characteristic curve (AUCs) of 0.734-0.836. Kaplan-Meier analysis showed significant survival differences based on Rad-Score (all Log-Rank p values <0.05). The random forest model outperformed other models, obtaining AUCs of 0.826 [95% confidential interval (CI): 0.766-0.879] and 0.799 (95% CI: 0.670-0.899) in the external test set 1 and 2, respectively. The SHAP analysis suggested positive associations between contributing factors and 5-year RFS status in non-metastatic ccRCC. CT radiomics-based interpretable ML model can effectively predict 5-year RFS in non-metastatic ccRCC patients, distinguishing between low and high 5-year recurrence risks.
Page 34 of 1611610 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.