Sort by:
Page 33 of 41404 results

Predicting abnormal fetal growth using deep learning.

Mikołaj KW, Christensen AN, Taksøe-Vester CA, Feragen A, Petersen OB, Lin M, Nielsen M, Svendsen MBS, Tolsgaard MG

pubmed logopapersMay 29 2025
Ultrasound assessment of fetal size and growth is the mainstay of monitoring fetal well-being during pregnancy, as being small for gestational age (SGA) or large for gestational age (LGA) poses significant risks for both the fetus and the mother. This study aimed to enhance the prediction accuracy of abnormal fetal growth. We developed a deep learning model, trained on a dataset of 433,096 ultrasound images derived from 94,538 examinations conducted on 65,752 patients. The deep learning model performed significantly better in detecting both SGA (58% vs 70%) and LGA compared with the current clinical standard, the Hadlock formula (41% vs 55%), p < 0.001. Additionally, the model estimates were significantly less biased across all demographic and technical variables compared to the Hadlock formula. Incorporating key anatomical features such as cortical structures, liver texture, and skin thickness was likely to be responsible for the improved prediction accuracy observed.

Efficient feature extraction using light-weight CNN attention-based deep learning architectures for ultrasound fetal plane classification.

Sivasubramanian A, Sasidharan D, Sowmya V, Ravi V

pubmed logopapersMay 28 2025
Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.

Contrast-Enhanced Ultrasound for Hepatocellular Carcinoma Diagnosis-<i>AJR</i> Expert Panel Narrative Review.

Li L, Burgio MD, Fetzer DT, Ferraioli G, Lyshchik A, Meloni MF, Rafailidis V, Sidhu PS, Vilgrain V, Wilson SR, Zhou J

pubmed logopapersMay 28 2025
Despite growing clinical use of contrast-enhanced ultrasound (CEUS), inconsistency remains in the modality's role in clinical pathways for hepatocellular carcinoma (HCC) diagnosis and management. This AJR Expert Panel Narrative Review provides practical insights on the use of CEUS for the diagnosis of HCC across populations, including individuals at high risk for HCC, individuals with metabolic dysfunction-associated steatotic liver disease, and remaining individuals not at high risk for HCC. Considerations addressed with respect to high-risk patients include CEUS diagnostic criteria for HCC, use of CEUS for differentiating HCC from non-HCC malignancy, use of CEUS for small (≤2 cm) lesions, use of CEUS for characterizing occult lesions on B-mode ultrasound, and use of CEUS for indeterminate lesions on CT or MRI. Representative literature addressing the use of CEUS for HCC diagnosis as well as gaps in knowledge requiring further investigation are highlighted. Throughout these discussions, the article distinguishes two broad types of ultrasound contrast agents used for liver imaging: pure blood-pool agents and a combined blood-pool and Kupffer-cell agent. Additional topics include the use of CEUS for treatment response assessment after nonradiation therapies and implications of artificial intelligence technologies. The article concludes with a series of consensus statements from the author panel.

Incorporating organ deformation in biological modeling and patient outcome study for permanent prostate brachytherapy.

To S, Mavroidis P, Chen RC, Wang A, Royce T, Tan X, Zhu T, Lian J

pubmed logopapersMay 28 2025
Permanent prostate brachytherapy has inherent intraoperative organ deformation due to the inflatable trans-rectal ultrasound probe cover. Since the majority of the dose is delivered postoperatively with no deformation, the dosimetry approved at the time of implant may not accurately represent the dose delivered to the target and organs at risk. We aimed to evaluate the biological effect of the prostate deformation and its correlation with patient-reported outcomes. We prospectively acquired ultrasound images of the prostate pre- and postprobe cover inflation for 27 patients undergoing I-125 seed implant. The coordinates of implanted seeds from approved clinical plan were transferred to deformation-corrected prostate to simulate the actual dosimetry using a machine learning-based deformable image registration. The DVHs of both sets of plans were reduced to biologically effective dose (BED) distribution and subsequently to Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) metrics. The change in fourteen patient-reported rectal and urinary symptoms between pretreatment to 6 months post-op time points were correlated with the TCP and NTCP metrics using the area under the curve (AUC) and odds ratio (OR). Between the clinical and the deformation corrected research plans, the mean TCP decreased by 9.4% (p < 0.01), whereas mean NTCP of rectum decreased by 10.3% and that of urethra increased by 16.3%, respectively (p < 0.01). For the diarrhea symptom, the deformation corrected research plans showed AUC=0.75 and OR = 8.9 (1.3-58.8) for the threshold NTCP>20%, while the clinical plan showed AUC=0.56 and OR = 1.4 (0.2 to 9.0). For the symptom of urinary control, the deformation corrected research plans showed AUC = 0.70, OR = 6.9 (0.6 to 78.0) for the threshold of NTCP>15%, while the clinical plan showed AUC = 0.51 and no positive OR. Taking organ deformation into consideration, clinical brachytherapy plans showed worse tumor coverage, worse urethra sparing but better rectal sparing. The deformation corrected research plans showed a stronger correlation with the patient-reported outcome than the clinical plans for the symptoms of diarrhea and urinary control.

High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models

Tristan S. W. Stevens, Oisín Nolan, Oudom Somphone, Jean-Luc Robert, Ruud J. G. van Sloun

arxiv logopreprintMay 28 2025
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces the reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain the focusing in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.

Improving Breast Cancer Diagnosis in Ultrasound Images Using Deep Learning with Feature Fusion and Attention Mechanism.

Asif S, Yan Y, Feng B, Wang M, Zheng Y, Jiang T, Fu R, Yao J, Lv L, Song M, Sui L, Yin Z, Wang VY, Xu D

pubmed logopapersMay 27 2025
Early detection of malignant lesions in ultrasound images is crucial for effective cancer diagnosis and treatment. While traditional methods rely on radiologists, deep learning models can improve accuracy, reduce errors, and enhance efficiency. This study explores the application of a deep learning model for classifying benign and malignant lesions, focusing on its performance and interpretability. In this study, we proposed a feature fusion-based deep learning model for classifying benign and malignant lesions in ultrasound images. The model leverages advanced architectures such as MobileNetV2 and DenseNet121, enhanced with feature fusion and attention mechanisms to boost classification accuracy. The clinical dataset comprises 2171 images collected from 1758 patients between December 2020 and May 2024. Additionally, we utilized the publicly available BUSI dataset, consisting of 780 images from female patients aged 25 to 75, collected in 2018. To enhance interpretability, we applied Grad-CAM, Saliency Maps, and shapley additive explanations (SHAP) techniques to explain the model's decision-making. A comparative analysis with radiologists of varying expertise levels is also conducted. The proposed model exhibited the highest performance, achieving an AUC of 0.9320 on our private dataset and an area under the curve (AUC) of 0.9834 on the public dataset, significantly outperforming traditional deep convolutional neural network models. It also exceeded the diagnostic performance of radiologists, showcasing its potential as a reliable tool for medical image classification. The model's success can be attributed to its incorporation of advanced architectures, feature fusion, and attention mechanisms. The model's decision-making process was further clarified using interpretability techniques like Grad-CAM, Saliency Maps, and SHAP, offering insights into its ability to focus on relevant image features for accurate classification. The proposed deep learning model offers superior accuracy in classifying benign and malignant lesions in ultrasound images, outperforming traditional models and radiologists. Its strong performance, coupled with interpretability techniques, demonstrates its potential as a reliable and efficient tool for medical diagnostics. The datasets generated and analyzed during the current study are not publicly available due to the nature of this research and participants of this study, but may be available from the corresponding author on reasonable request.

Prostate Cancer Screening with Artificial Intelligence-Enhanced Micro-Ultrasound: A Comparative Study with Traditional Methods

Muhammad Imran, Wayne G. Brisbane, Li-Ming Su, Jason P. Joseph, Wei Shao

arxiv logopreprintMay 27 2025
Background and objective: Micro-ultrasound (micro-US) is a novel imaging modality with diagnostic accuracy comparable to MRI for detecting clinically significant prostate cancer (csPCa). We investigated whether artificial intelligence (AI) interpretation of micro-US can outperform clinical screening methods using PSA and digital rectal examination (DRE). Methods: We retrospectively studied 145 men who underwent micro-US guided biopsy (79 with csPCa, 66 without). A self-supervised convolutional autoencoder was used to extract deep image features from 2D micro-US slices. Random forest classifiers were trained using five-fold cross-validation to predict csPCa at the slice level. Patients were classified as csPCa-positive if 88 or more consecutive slices were predicted positive. Model performance was compared with a classifier using PSA, DRE, prostate volume, and age. Key findings and limitations: The AI-based micro-US model and clinical screening model achieved AUROCs of 0.871 and 0.753, respectively. At a fixed threshold, the micro-US model achieved 92.5% sensitivity and 68.1% specificity, while the clinical model showed 96.2% sensitivity but only 27.3% specificity. Limitations include a retrospective single-center design and lack of external validation. Conclusions and clinical implications: AI-interpreted micro-US improves specificity while maintaining high sensitivity for csPCa detection. This method may reduce unnecessary biopsies and serve as a low-cost alternative to PSA-based screening. Patient summary: We developed an AI system to analyze prostate micro-ultrasound images. It outperformed PSA and DRE in detecting aggressive cancer and may help avoid unnecessary biopsies.

An orchestration learning framework for ultrasound imaging: Prompt-Guided Hyper-Perception and Attention-Matching Downstream Synchronization.

Lin Z, Li S, Wang S, Gao Z, Sun Y, Lam CT, Hu X, Yang X, Ni D, Tan T

pubmed logopapersMay 27 2025
Ultrasound imaging is pivotal in clinical diagnostics due to its affordability, portability, safety, real-time capability, and non-invasive nature. It is widely utilized for examining various organs, such as the breast, thyroid, ovary, cardiac, and more. However, the manual interpretation and annotation of ultrasound images are time-consuming and prone to variability among physicians. While single-task artificial intelligence (AI) solutions have been explored, they are not ideal for scaling AI applications in medical imaging. Foundation models, although a trending solution, often struggle with real-world medical datasets due to factors such as noise, variability, and the incapability of flexibly aligning prior knowledge with task adaptation. To address these limitations, we propose an orchestration learning framework named PerceptGuide for general-purpose ultrasound classification and segmentation. Our framework incorporates a novel orchestration mechanism based on prompted hyper-perception, which adapts to the diverse inductive biases required by different ultrasound datasets. Unlike self-supervised pre-trained models, which require extensive fine-tuning, our approach leverages supervised pre-training to directly capture task-relevant features, providing a stronger foundation for multi-task and multi-organ ultrasound imaging. To support this research, we compiled a large-scale Multi-task, Multi-organ public ultrasound dataset (M<sup>2</sup>-US), featuring images from 9 organs and 16 datasets, encompassing both classification and segmentation tasks. Our approach employs four specific prompts-Object, Task, Input, and Position-to guide the model, ensuring task-specific adaptability. Additionally, a downstream synchronization training stage is introduced to fine-tune the model for new data, significantly improving generalization capabilities and enabling real-world applications. Experimental results demonstrate the robustness and versatility of our framework in handling multi-task and multi-organ ultrasound image processing, outperforming both specialist models and existing general AI solutions. Compared to specialist models, our method improves segmentation from 82.26% to 86.45%, classification from 71.30% to 79.08%, while also significantly reducing model parameters.

Can intraoperative improvement of radial endobronchial ultrasound imaging enhance the diagnostic yield in peripheral pulmonary lesions?

Nishida K, Ito T, Iwano S, Okachi S, Nakamura S, Chrétien B, Chen-Yoshikawa TF, Ishii M

pubmed logopapersMay 26 2025
Data regarding the diagnostic efficacy of radial endobronchial ultrasound (R-EBUS) findings obtained via transbronchial needle aspiration (TBNA)/biopsy (TBB) with endobronchial ultrasonography with a guide sheath (EBUS-GS) for peripheral pulmonary lesions (PPLs) are lacking. We evaluated whether intraoperative probe repositioning improves R-EBUS imaging and affects diagnostic yield and safety of EBUS-guided sampling for PPLs. We retrospectively studied 363 patients with PPLs who underwent TBNA/TBB (83 lesions) or TBB (280 lesions) using EBUS-GS. Based on the R-EBUS findings before and after these procedures, patients were categorized into three groups: the improved R-EBUS image (n = 52), unimproved R-EBUS image (n = 69), and initial within-lesion groups (n = 242). The impact of improved R-EBUS findings on diagnostic yield and complications was assessed using multivariable logistic regression, adjusting for lesion size, lesion location, and the presence of a bronchus leading to the lesion on CT. A separate exploratory random-forest model with SHAP analysis was used to explore factors associated with successful repositioning in lesions not initially "within." The diagnostic yield in the improved R-EBUS group was significantly higher than that in the unimproved R-EBUS group (76.9% vs. 46.4%, p = 0.001). The regression model revealed that the improvement in intraoperative R-EBUS findings was associated with a high diagnostic yield (odds ratio: 3.55, 95% confidence interval, 1.57-8.06, p = 0.002). Machine learning analysis indicated that inner lesion location and radiographic visibility were the most influential predictors of successful repositioning. The complication rates were similar across all groups (total complications: 5.8% vs. 4.3% vs. 6.2%, p = 0.943). Improved R-EBUS findings during TBNA/TBB or TBB with EBUS-GS were associated with a high diagnostic yield without an increase in complications, even when the initial R-EBUS findings were inadequate. This suggests that repeated intraoperative probe repositioning can safely boost outcomes.

Fetal origins of adult disease: transforming prenatal care by integrating Barker's Hypothesis with AI-driven 4D ultrasound.

Andonotopo W, Bachnas MA, Akbar MIA, Aziz MA, Dewantiningrum J, Pramono MBA, Sulistyowati S, Stanojevic M, Kurjak A

pubmed logopapersMay 26 2025
The fetal origins of adult disease, widely known as Barker's Hypothesis, suggest that adverse fetal environments significantly impact the risk of developing chronic diseases, such as diabetes and cardiovascular conditions, in adulthood. Recent advancements in 4D ultrasound (4D US) and artificial intelligence (AI) technologies offer a promising avenue for improving prenatal diagnostics and validating this hypothesis. These innovations provide detailed insights into fetal behavior and neurodevelopment, linking early developmental markers to long-term health outcomes. This study synthesizes contemporary developments in AI-enhanced 4D US, focusing on their roles in detecting fetal anomalies, assessing neurodevelopmental markers, and evaluating congenital heart defects. The integration of AI with 4D US allows for real-time, high-resolution visualization of fetal anatomy and behavior, surpassing the diagnostic precision of traditional methods. Despite these advancements, challenges such as algorithmic bias, data diversity, and real-world validation persist and require further exploration. Findings demonstrate that AI-driven 4D US improves diagnostic sensitivity and accuracy, enabling earlier detection of fetal abnormalities and optimization of clinical workflows. By providing a more comprehensive understanding of fetal programming, these technologies substantiate the links between early-life conditions and adult health outcomes, as proposed by Barker's Hypothesis. The integration of AI and 4D US has the potential to revolutionize prenatal care, paving the way for personalized maternal-fetal healthcare. Future research should focus on addressing current limitations, including ethical concerns and accessibility challenges, to promote equitable implementation. Such advancements could significantly reduce the global burden of chronic diseases and foster healthier generations.
Page 33 of 41404 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.