Sort by:
Page 32 of 58575 results

Brain Imaging Foundation Models, Are We There Yet? A Systematic Review of Foundation Models for Brain Imaging and Biomedical Research

Salah Ghamizi, Georgia Kanli, Yu Deng, Magali Perquin, Olivier Keunen

arxiv logopreprintJun 16 2025
Foundation models (FMs), large neural networks pretrained on extensive and diverse datasets, have revolutionized artificial intelligence and shown significant promise in medical imaging by enabling robust performance with limited labeled data. Although numerous surveys have reviewed the application of FM in healthcare care, brain imaging remains underrepresented, despite its critical role in the diagnosis and treatment of neurological diseases using modalities such as MRI, CT, and PET. Existing reviews either marginalize brain imaging or lack depth on the unique challenges and requirements of FM in this domain, such as multimodal data integration, support for diverse clinical tasks, and handling of heterogeneous, fragmented datasets. To address this gap, we present the first comprehensive and curated review of FMs for brain imaging. We systematically analyze 161 brain imaging datasets and 86 FM architectures, providing information on key design choices, training paradigms, and optimizations driving recent advances. Our review highlights the leading models for various brain imaging tasks, summarizes their innovations, and critically examines current limitations and blind spots in the literature. We conclude by outlining future research directions to advance FM applications in brain imaging, with the aim of fostering progress in both clinical and research settings.

PRO: Projection Domain Synthesis for CT Imaging

Kang Chen, Bin Huang, Xuebin Yang, Junyan Zhang, Qiegen Liu

arxiv logopreprintJun 16 2025
Synthesizing high quality CT projection data remains a significant challenge due to the limited availability of annotated data and the complex nature of CT imaging. In this work, we present PRO, a projection domain synthesis foundation model for CT imaging. To the best of our knowledge, this is the first study that performs CT synthesis in the projection domain. Unlike previous approaches that operate in the image domain, PRO learns rich structural representations from raw projection data and leverages anatomical text prompts for controllable synthesis. This projection domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capable of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves performance across multiple downstream tasks, including low-dose and sparse-view reconstruction. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.

Appropriateness of acute breast symptom recommendations provided by ChatGPT.

Byrd C, Kingsbury C, Niell B, Funaro K, Bhatt A, Weinfurtner RJ, Ataya D

pubmed logopapersJun 16 2025
We evaluated the accuracy of ChatGPT-3.5's responses to common questions regarding acute breast symptoms and explored whether using lay language, as opposed to medical language, affected the accuracy of the responses. Questions were formulated addressing acute breast conditions, informed by the American College of Radiology (ACR) Appropriateness Criteria (AC) and our clinical experience at a tertiary referral breast center. Of these, seven addressed the most common acute breast symptoms, nine addressed pregnancy-associated breast symptoms, and four addressed specific management and imaging recommendations for a palpable breast abnormality. Questions were submitted three times to ChatGPT-3.5 and all responses were assessed by five fellowship-trained breast radiologists. Evaluation criteria included clinical judgment and adherence to the ACR guidelines, with responses scored as: 1) "appropriate," 2) "inappropriate" if any response contained inappropriate information, or 3) "unreliable" if responses were inconsistent. A majority vote determined the appropriateness for each question. ChatGPT-3.5 generated responses were appropriate for 7/7 (100 %) questions regarding common acute breast symptoms when phrased both colloquially and using standard medical terminology. In contrast, ChatGPT-3.5 generated responses were appropriate for 3/9 (33 %) questions about pregnancy-associated breast symptoms and 3/4 (75 %) questions about management and imaging recommendations for a palpable breast abnormality. ChatGPT-3.5 can automate healthcare information related to appropriate management of acute breast symptoms when prompted with both standard medical terminology or lay phrasing of the questions. However, physician oversight remains critical given the presence of inappropriate recommendations for pregnancy associated breast symptoms and management of palpable abnormalities.

GM-LDM: Latent Diffusion Model for Brain Biomarker Identification through Functional Data-Driven Gray Matter Synthesis

Hu Xu, Yang Jingling, Jia Sihan, Bi Yuda, Calhoun Vince

arxiv logopreprintJun 15 2025
Generative models based on deep learning have shown significant potential in medical imaging, particularly for modality transformation and multimodal fusion in MRI-based brain imaging. This study introduces GM-LDM, a novel framework that leverages the latent diffusion model (LDM) to enhance the efficiency and precision of MRI generation tasks. GM-LDM integrates a 3D autoencoder, pre-trained on the large-scale ABCD MRI dataset, achieving statistical consistency through KL divergence loss. We employ a Vision Transformer (ViT)-based encoder-decoder as the denoising network to optimize generation quality. The framework flexibly incorporates conditional data, such as functional network connectivity (FNC) data, enabling personalized brain imaging, biomarker identification, and functional-to-structural information translation for brain diseases like schizophrenia.

MRI-CORE: A Foundation Model for Magnetic Resonance Imaging

Haoyu Dong, Yuwen Chen, Hanxue Gu, Nicholas Konz, Yaqian Chen, Qihang Li, Maciej A. Mazurowski

arxiv logopreprintJun 13 2025
The widespread use of Magnetic Resonance Imaging (MRI) and the rise of deep learning have enabled the development of powerful predictive models for a wide range of diagnostic tasks in MRI, such as image classification or object segmentation. However, training models for specific new tasks often requires large amounts of labeled data, which is difficult to obtain due to high annotation costs and data privacy concerns. To circumvent this issue, we introduce MRI-CORE (MRI COmprehensive Representation Encoder), a vision foundation model pre-trained using more than 6 million slices from over 110,000 MRI volumes across 18 main body locations. Experiments on five diverse object segmentation tasks in MRI demonstrate that MRI-CORE can significantly improve segmentation performance in realistic scenarios with limited labeled data availability, achieving an average gain of 6.97% 3D Dice Coefficient using only 10 annotated slices per task. We further demonstrate new model capabilities in MRI such as classification of image properties including body location, sequence type and institution, and zero-shot segmentation. These results highlight the value of MRI-CORE as a generalist vision foundation model for MRI, potentially lowering the data annotation resource barriers for many applications.

Inference of single cell profiles from histology stains with the Single-Cell omics from Histology Analysis Framework (SCHAF)

Comiter, C., Chen, X., Vaishnav, E. D., Kobayashi-Kirschvink, K. J., Ciapmricotti, M., Zhang, K., Murray, J., Monticolo, F., Qi, J., Tanaka, R., Brodowska, S. E., Li, B., Yang, Y., Rodig, S. J., Karatza, A., Quintanal Villalonga, A., Turner, M., Pfaff, K. L., Jane-Valbuena, J., Slyper, M., Waldman, J., Vigneau, S., Wu, J., Blosser, T. R., Segerstolpe, A., Abravanel, D., Wagle, N., Demehri, S., Zhuang, X., Rudin, C. M., Klughammer, J., Rozenblatt-Rosen, O., Stultz, C. M., Shu, J., Regev, A.

biorxiv logopreprintJun 13 2025
Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues--including lung cancer, metastatic breast cancer, placentae, and whole mouse pups--training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.

Taming Stable Diffusion for Computed Tomography Blind Super-Resolution

Chunlei Li, Yilei Shi, Haoxi Hu, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 13 2025
High-resolution computed tomography (CT) imaging is essential for medical diagnosis but requires increased radiation exposure, creating a critical trade-off between image quality and patient safety. While deep learning methods have shown promise in CT super-resolution, they face challenges with complex degradations and limited medical training data. Meanwhile, large-scale pre-trained diffusion models, particularly Stable Diffusion, have demonstrated remarkable capabilities in synthesizing fine details across various vision tasks. Motivated by this, we propose a novel framework that adapts Stable Diffusion for CT blind super-resolution. We employ a practical degradation model to synthesize realistic low-quality images and leverage a pre-trained vision-language model to generate corresponding descriptions. Subsequently, we perform super-resolution using Stable Diffusion with a specialized controlling strategy, conditioned on both low-resolution inputs and the generated text descriptions. Extensive experiments show that our method outperforms existing approaches, demonstrating its potential for achieving high-quality CT imaging at reduced radiation doses. Our code will be made publicly available.

Prediction of functional outcome after traumatic brain injury: a narrative review.

Iaquaniello C, Scordo E, Robba C

pubmed logopapersJun 13 2025
To synthesize current evidence on prognostic factors, tools, and strategies influencing functional outcomes in patients with traumatic brain injury (TBI), with a focus on the acute and postacute phases of care. Key early predictors such as Glasgow Coma Scale (GCS) scores, pupillary reactivity, and computed tomography (CT) imaging findings remain fundamental in guiding clinical decision-making. Prognostic models like IMPACT and CRASH enhance early risk stratification, while outcome measures such as the Glasgow Outcome Scale-Extended (GOS-E) provide structured long-term assessments. Despite their utility, heterogeneity in assessment approaches and treatment protocols continues to limit consistency in outcome predictions. Recent advancements highlight the value of fluid biomarkers like neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), which offer promising avenues for improved accuracy. Additionally, artificial intelligence models are emerging as powerful tools to integrate complex datasets and refine individualized outcome forecasting. Neurological prognostication after TBI is evolving through the integration of clinical, radiological, molecular, and computational data. Although standardized models and scales remain foundational, emerging technologies and therapies - such as biomarkers, machine learning, and neurostimulants - represent a shift toward more personalized and actionable strategies to optimize recovery and long-term function.

Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis

Zuzanna Skorniewska, Bartlomiej W. Papiez

arxiv logopreprintJun 13 2025
The adoption of neural network models in medical imaging has been constrained by strict privacy regulations, limited data availability, high acquisition costs, and demographic biases. Deep generative models offer a promising solution by generating synthetic data that bypasses privacy concerns and addresses fairness by producing samples for under-represented groups. However, unlike natural images, medical imaging requires validation not only for fidelity (e.g., Fr\'echet Inception Score) but also for morphological and clinical accuracy. This is particularly true for colour fundus retinal imaging, which requires precise replication of the retinal vascular network, including vessel topology, continuity, and thickness. In this study, we in-vestigated whether a distance-based loss function based on deep activation layers of a large foundational model trained on large corpus of domain data, colour fundus imaging, offers advantages over a perceptual loss and edge-detection based loss functions. Our extensive validation pipeline, based on both domain-free and domain specific tasks, suggests that domain-specific deep features do not improve autoen-coder image generation. Conversely, our findings highlight the effectiveness of con-ventional edge detection filters in improving the sharpness of vascular structures in synthetic samples.

Exploring the limit of image resolution for human expert classification of vascular ultrasound images in giant cell arteritis and healthy subjects: the GCA-US-AI project.

Bauer CJ, Chrysidis S, Dejaco C, Koster MJ, Kohler MJ, Monti S, Schmidt WA, Mukhtyar CB, Karakostas P, Milchert M, Ponte C, Duftner C, de Miguel E, Hocevar A, Iagnocco A, Terslev L, Døhn UM, Nielsen BD, Juche A, Seitz L, Keller KK, Karalilova R, Daikeler T, Mackie SL, Torralba K, van der Geest KSM, Boumans D, Bosch P, Tomelleri A, Aschwanden M, Kermani TA, Diamantopoulos A, Fredberg U, Inanc N, Petzinna SM, Albarqouni S, Behning C, Schäfer VS

pubmed logopapersJun 12 2025
Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing severe ocular and other complications, yet expertise in ultrasound performance is scarce. The development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image classification and helps to diagnose GCA early promises to close the existing gap. In the projection of the planned AI, this study investigates the minimum image resolution required for human experts to reliably classify ultrasound images of arteries commonly affected by GCA for the presence or absence of GCA. Thirty-one international experts in GCA ultrasonography participated in a web-based exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as GCA, normal, or not able to classify. The following segments were assessed: (1) superficial common temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512 pixels, thereby resulting in a total of 250 images to be classified by every study participant. Classification performance improved with increasing resolution up to a threshold, plateauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767 (95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888). A resolution of 224 × 224 pixels ensures reliable human expert classification and aligns with the input requirements of many common AI-based architectures. Thus, the results of this study substantially guide projected AI development.
Page 32 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.