Sort by:
Page 32 of 78779 results

DeepJIVE: Learning Joint and Individual Variation Explained from Multimodal Data Using Deep Learning

Matthew Drexler, Benjamin Risk, James J Lah, Suprateek Kundu, Deqiang Qiu

arxiv logopreprintJul 25 2025
Conventional multimodal data integration methods provide a comprehensive assessment of the shared or unique structure within each individual data type but suffer from several limitations such as the inability to handle high-dimensional data and identify nonlinear structures. In this paper, we introduce DeepJIVE, a deep-learning approach to performing Joint and Individual Variance Explained (JIVE). We perform mathematical derivation and experimental validations using both synthetic and real-world 1D, 2D, and 3D datasets. Different strategies of achieving the identity and orthogonality constraints for DeepJIVE were explored, resulting in three viable loss functions. We found that DeepJIVE can successfully uncover joint and individual variations of multimodal datasets. Our application of DeepJIVE to the Alzheimer's Disease Neuroimaging Initiative (ADNI) also identified biologically plausible covariation patterns between the amyloid positron emission tomography (PET) and magnetic resonance (MR) images. In conclusion, the proposed DeepJIVE can be a useful tool for multimodal data analysis.

RealDeal: Enhancing Realism and Details in Brain Image Generation via Image-to-Image Diffusion Models

Shen Zhu, Yinzhu Jin, Tyler Spears, Ifrah Zawar, P. Thomas Fletcher

arxiv logopreprintJul 24 2025
We propose image-to-image diffusion models that are designed to enhance the realism and details of generated brain images by introducing sharp edges, fine textures, subtle anatomical features, and imaging noise. Generative models have been widely adopted in the biomedical domain, especially in image generation applications. Latent diffusion models achieve state-of-the-art results in generating brain MRIs. However, due to latent compression, generated images from these models are overly smooth, lacking fine anatomical structures and scan acquisition noise that are typically seen in real images. This work formulates the realism enhancing and detail adding process as image-to-image diffusion models, which refines the quality of LDM-generated images. We employ commonly used metrics like FID and LPIPS for image realism assessment. Furthermore, we introduce new metrics to demonstrate the realism of images generated by RealDeal in terms of image noise distribution, sharpness, and texture.

TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound

Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao

arxiv logopreprintJul 24 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Our code will be publicly available upon acceptance.

Agentic AI in radiology: Emerging Potential and Unresolved Challenges.

Dietrich N

pubmed logopapersJul 24 2025
This commentary introduces agentic artificial intelligence (AI) as an emerging paradigm in radiology, marking a shift from passive, user-triggered tools to systems capable of autonomous workflow management, task planning, and clinical decision support. Agentic AI models may dynamically prioritize imaging studies, tailor recommendations based on patient history and scan context, and automate administrative follow-up tasks, offering potential gains in efficiency, triage accuracy, and cognitive support. While not yet widely implemented, early pilot studies and proof-of-concept applications highlight promising utility across high-volume and high-acuity settings. Key barriers, including limited clinical validation, evolving regulatory frameworks, and integration challenges, must be addressed to ensure safe, scalable deployment. Agentic AI represents a forward-looking evolution in radiology that warrants careful development and clinician-guided implementation.

Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model

Hang Xu, Alexandre Bousse, Alessandro Perelli

arxiv logopreprintJul 24 2025
Dual-energy X-ray Computed Tomography (DECT) constitutes an advanced technology which enables automatic decomposition of materials in clinical images without manual segmentation using the dependency of the X-ray linear attenuation with energy. However, most methods perform material decomposition in the image domain as a post-processing step after reconstruction but this procedure does not account for the beam-hardening effect and it results in sub-optimal results. In this work, we propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition which directly converts the DECT projection data into material images. The algorithm is based on incorporating the knowledge of the spectral DECT model into the deep learning training loss and combining a score-based denoising diffusion learned prior in the material image domain. Importantly the inference optimization loss takes as inputs directly the sinogram and converts to material images through a model-based conditional diffusion model which guarantees consistency of the results. We evaluate the performance with both quantitative and qualitative estimation of the proposed DEcomp-MoD method on synthetic DECT sinograms from the low-dose AAPM dataset. Finally, we show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks, with the potential to be deployed for clinical diagnosis.

Interpretable Deep Learning Approaches for Reliable GI Image Classification: A Study with the HyperKvasir Dataset

Wahid, S. B., Rothy, Z. T., News, R. K., Rieyan, S. A.

medrxiv logopreprintJul 23 2025
Deep learning has emerged as a promising tool for automating gastrointestinal (GI) disease diagnosis. However, multi-class GI disease classification remains underexplored. This study addresses this gap by presenting a framework that uses advanced models like InceptionNetV3 and ResNet50, combined with boosting algorithms (XGB, LGBM), to classify lower GI abnormalities. InceptionNetV3 with XGB achieved the best recall of 0.81 and an F1 score of 0.90. To assist clinicians in understanding model decisions, the Grad-CAM technique, a form of explainable AI, was employed to highlight the critical regions influencing predictions, fostering trust in these systems. This approach significantly improves both the accuracy and reliability of GI disease diagnosis.

Synthetic data trained open-source language models are feasible alternatives to proprietary models for radiology reporting.

Pandita A, Keniston A, Madhuripan N

pubmed logopapersJul 23 2025
The study assessed the feasibility of using synthetic data to fine-tune various open-source LLMs for free text to structured data conversation in radiology, comparing their performance with GPT models. A training set of 3000 synthetic thyroid nodule dictations was generated to train six open-source models (Starcoderbase-1B, Starcoderbase-3B, Mistral-7B, Llama-3-8B, Llama-2-13B, and Yi-34B). ACR TI-RADS template was the target model output. The model performance was tested on 50 thyroid nodule dictations from MIMIC-III patient dataset and compared against 0-shot, 1-shot, and 5-shot performance of GPT-3.5 and GPT-4. GPT-4 5-shot and Yi-34B showed the highest performance with no statistically significant difference between the models. Various open models outperformed GPT models with statistical significance. Overall, models trained with synthetic data showed performance comparable to GPT models in structured text conversion in our study. Given privacy preserving advantages, open LLMs can be utilized as a viable alternative to proprietary GPT models.

Hi ChatGPT, I am a Radiologist, How can you help me?

Bellini D, Ferrari R, Vicini S, Rengo M, Saletti CL, Carbone I

pubmed logopapersJul 23 2025
This review paper explores the integration of ChatGPT, a generative AI model developed by OpenAI, into radiological practices, focusing on its potential to enhance the operational efficiency of radiologists. ChatGPT operates on the GPT architecture, utilizing advanced machine learning techniques, including unsupervised pre-training and reinforcement learning, to generate human-like text responses. While AI applications in radiology predominantly focus on imaging acquisition, reconstruction, and interpretation-commonly embedded directly within hardware-the accessibility and functional breadth of ChatGPT make it a unique tool. This interview-based review should not be intended as a detailed evaluation of all ChatGPT features. Instead, it aims to test its utility in everyday radiological tasks through real-world examples. ChatGPT demonstrated strong capabilities in structuring radiology reports according to international guidelines (e.g., PI-RADS, CT reporting for diverticulitis), designing a complete research protocol, and performing advanced statistical analysis from Excel datasets, including ROC curve generation and intergroup comparison. Although not capable of directly interpreting DICOM images, ChatGPT provided meaningful assistance in image post-processing and interpretation when images were converted to standard formats. These findings highlight its current strengths and limitations as a supportive tool for radiologists.

MaskedCLIP: Bridging the Masked and CLIP Space for Semi-Supervised Medical Vision-Language Pre-training

Lei Zhu, Jun Zhou, Rick Siow Mong Goh, Yong Liu

arxiv logopreprintJul 23 2025
Foundation models have recently gained tremendous popularity in medical image analysis. State-of-the-art methods leverage either paired image-text data via vision-language pre-training or unpaired image data via self-supervised pre-training to learn foundation models with generalizable image features to boost downstream task performance. However, learning foundation models exclusively on either paired or unpaired image data limits their ability to learn richer and more comprehensive image features. In this paper, we investigate a novel task termed semi-supervised vision-language pre-training, aiming to fully harness the potential of both paired and unpaired image data for foundation model learning. To this end, we propose MaskedCLIP, a synergistic masked image modeling and contrastive language-image pre-training framework for semi-supervised vision-language pre-training. The key challenge in combining paired and unpaired image data for learning a foundation model lies in the incompatible feature spaces derived from these two types of data. To address this issue, we propose to connect the masked feature space with the CLIP feature space with a bridge transformer. In this way, the more semantic specific CLIP features can benefit from the more general masked features for semantic feature extraction. We further propose a masked knowledge distillation loss to distill semantic knowledge of original image features in CLIP feature space back to the predicted masked image features in masked feature space. With this mutually interactive design, our framework effectively leverages both paired and unpaired image data to learn more generalizable image features for downstream tasks. Extensive experiments on retinal image analysis demonstrate the effectiveness and data efficiency of our method.

Interpretable AI Framework for Secure and Reliable Medical Image Analysis in IoMT Systems.

Matthew UO, Rosa RL, Saadi M, Rodriguez DZ

pubmed logopapersJul 23 2025
The integration of artificial intelligence (AI) into medical image analysis has transformed healthcare, offering unprecedented precision in diagnosis, treatment planning, and disease monitoring. However, its adoption within the Internet of Medical Things (IoMT) raises significant challenges related to transparency, trustworthiness, and security. This paper introduces a novel Explainable AI (XAI) framework tailored for Medical Cyber-Physical Systems (MCPS), addressing these challenges by combining deep neural networks with symbolic knowledge reasoning to deliver clinically interpretable insights. The framework incorporates an Enhanced Dynamic Confidence-Weighted Attention (Enhanced DCWA) mechanism, which improves interpretability and robustness by dynamically refining attention maps through adaptive normalization and multi-level confidence weighting. Additionally, a Resilient Observability and Detection Engine (RODE) leverages sparse observability principles to detect and mitigate adversarial threats, ensuring reliable performance in dynamic IoMT environments. Evaluations conducted on benchmark datasets, including CheXpert, RSNA Pneumonia Detection Challenge, and NIH Chest X-ray Dataset, demonstrate significant advancements in classification accuracy, adversarial robustness, and explainability. The framework achieves a 15% increase in lesion classification accuracy, a 30% reduction in robustness loss, and a 20% improvement in the Explainability Index compared to state-of-the-art methods.
Page 32 of 78779 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.