Sort by:
Page 30 of 56556 results

Clinical validation of AI assisted animal ultrasound models for diagnosis of early liver trauma.

Song Q, He X, Wang Y, Gao H, Tan L, Ma J, Kang L, Han P, Luo Y, Wang K

pubmed logopapersJul 2 2025
The study aimed to develop an AI-assisted ultrasound model for early liver trauma identification, using data from Bama miniature pigs and patients in Beijing, China. A deep learning model was created and fine-tuned with animal and clinical data, achieving high accuracy metrics. In internal tests, the model outperformed both Junior and Senior sonographers. External tests showed the model's effectiveness, with a Dice Similarity Coefficient of 0.74, True Positive Rate of 0.80, Positive Predictive Value of 0.74, and 95% Hausdorff distance of 14.84. The model's performance was comparable to Junior sonographers and slightly lower than Senior sonographers. This AI model shows promise for liver injury detection, offering a valuable tool with diagnostic capabilities similar to those of less experienced human operators.

A superpixel based self-attention network for uterine fibroid segmentation in high intensity focused ultrasound guidance images.

Wen S, Zhang D, Lei Y, Yang Y

pubmed logopapersJul 1 2025
Ultrasound guidance images are widely used for high intensity focused ultrasound (HIFU) therapy; however, the speckles, acoustic shadows, and signal attenuation in ultrasound guidance images hinder the observation of the images by radiologists and make segmentation of ultrasound guidance images more difficult. To address these issues, we proposed the superpixel based attention network, a network integrating superpixels and self-attention mechanisms that can automatically segment tumor regions in ultrasound guidance images. The method is implemented based on the framework of region splitting and merging. The ultrasound guidance image is first over-segmented into superpixels, then features within the superpixels are extracted and encoded into superpixel feature matrices with the uniform size. The network takes superpixel feature matrices and their positional information as input, and classifies superpixels using self-attention modules and convolutional layers. Finally, the superpixels are merged based on the classification results to obtain the tumor region, achieving automatic tumor region segmentation. The method was applied to a local dataset consisting of 140 ultrasound guidance images from uterine fibroid HIFU therapy. The performance of the proposed method was quantitatively evaluated by comparing the segmentation results with those of the pixel-wise segmentation networks. The proposed method achieved 75.95% and 7.34% in mean intersection over union (IoU) and mean normalized Hausdorff distance (NormHD). In comparison to the segmentation transformer (SETR), this represents an improvement in performance by 5.52% for IoU and 1.49% for NormHD. Paired t-tests were conducted to evaluate the significant difference in IoU and NormHD between the proposed method and the comparison methods. All p-values of the paired t-tests were found to be less than 0.05. The analysis of evaluation metrics and segmentation results indicates that the proposed method performs better than existing pixel-wise segmentation networks in segmenting the tumor region on ultrasound guidance images.

Attention residual network for medical ultrasound image segmentation.

Liu H, Zhang P, Hu J, Huang Y, Zuo S, Li L, Liu M, She C

pubmed logopapersJul 1 2025
Ultrasound imaging can distinctly display the morphology and structure of internal organs within the human body, enabling the examination of organs like the breast, liver, and thyroid. It can identify the locations of tumors, nodules, and other lesions, thereby serving as an efficacious tool for treatment detection and rehabilitation evaluation. Typically, the attending physician is required to manually demarcate the boundaries of lesion locations, such as tumors, in ultrasound images. Nevertheless, several issues exist. The high noise level in ultrasound images, the degradation of image quality due to the impact of surrounding tissues, and the influence of the operator's experience and proficiency on the determination of lesion locations can all contribute to a reduction in the accuracy of delineating the boundaries of lesion sites. In the wake of the advancement of deep learning, its application in medical image segmentation is becoming increasingly prevalent. For instance, while the U-Net model has demonstrated a favorable performance in medical image segmentation, the convolution layers of the traditional U-Net model are relatively simplistic, leading to suboptimal extraction of global information. Moreover, due to the significant noise present in ultrasound images, the model is prone to interference. In this research, we propose an Attention Residual Network model (ARU-Net). By incorporating residual connections within the encoder section, the learning capacity of the model is enhanced. Additionally, a spatial hybrid convolution module is integrated to augment the model's ability to extract global information and deepen the vertical architecture of the network. During the feature fusion stage of the skip connections, a channel attention mechanism and a multi-convolutional self-attention mechanism are respectively introduced to suppress noisy points within the fused feature maps, enabling the model to acquire more information regarding the target region. Finally, the predictive efficacy of the model was evaluated using publicly accessible breast ultrasound and thyroid ultrasound data. The ARU-Net achieved mean Intersection over Union (mIoU) values of 82.59% and 84.88%, accuracy values of 97.53% and 96.09%, and F1-score values of 90.06% and 89.7% for breast and thyroid ultrasound, respectively.

Deep Learning Model for Real-Time Nuchal Translucency Assessment at Prenatal US.

Zhang Y, Yang X, Ji C, Hu X, Cao Y, Chen C, Sui H, Li B, Zhen C, Huang W, Deng X, Yin L, Ni D

pubmed logopapersJul 1 2025
Purpose To develop and evaluate an artificial intelligence-based model for real-time nuchal translucency (NT) plane identification and measurement in prenatal US assessments. Materials and Methods In this retrospective multicenter study conducted from January 2022 to October 2023, the Automated Identification and Measurement of NT (AIM-NT) model was developed and evaluated using internal and external datasets. NT plane assessment, including identification of the NT plane and measurement of NT thickness, was independently conducted by AIM-NT and experienced radiologists, with the results subsequently audited by radiology specialists and accuracy compared between groups. To assess alignment of artificial intelligence with radiologist workflow, discrepancies between the AIM-NT model and radiologists in NT plane identification time and thickness measurements were evaluated. Results The internal dataset included a total of 3959 NT images from 3153 fetuses, and the external dataset included 267 US videos from 267 fetuses. On the internal testing dataset, AIM-NT achieved an area under the receiver operating characteristic curve of 0.92 for NT plane identification. On the external testing dataset, there was no evidence of differences between AIM-NT and radiologists in NT plane identification accuracy (88.8% vs 87.6%, <i>P</i> = .69) or NT thickness measurements on standard and nonstandard NT planes (<i>P</i> = .29 and .59). AIM-NT demonstrated high consistency with radiologists in NT plane identification time, with 1-minute discrepancies observed in 77.9% of cases, and NT thickness measurements, with a mean difference of 0.03 mm and mean absolute error of 0.22 mm (95% CI: 0.19, 0.25). Conclusion AIM-NT demonstrated high accuracy in identifying the NT plane and measuring NT thickness on prenatal US images, showing minimal discrepancies with radiologist workflow. <b>Keywords:</b> Ultrasound, Fetus, Segmentation, Feature Detection, Diagnosis, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Horii in this issue.

Ultrasound-based machine learning model to predict the risk of endometrial cancer among postmenopausal women.

Li YX, Lu Y, Song ZM, Shen YT, Lu W, Ren M

pubmed logopapersJul 1 2025
Current ultrasound-based screening for endometrial cancer (EC) primarily relies on endometrial thickness (ET) and morphological evaluation, which suffer from low specificity and high interobserver variability. This study aimed to develop and validate an artificial intelligence (AI)-driven diagnostic model to improve diagnostic accuracy and reduce variability. A total of 1,861 consecutive postmenopausal women were enrolled from two centers between April 2021 and April 2024. Super-resolution (SR) technique was applied to enhance image quality before feature extraction. Radiomics features were extracted using Pyradiomics, and deep learning features were derived from convolutional neural network (CNN). Three models were developed: (1) R model: radiomics-based machine learning (ML) algorithms; (2) CNN model: image-based CNN algorithms; (3) DLR model: a hybrid model combining radiomics and deep learning features with ML algorithms. Using endometrium-level regions of interest (ROI), the DLR model achieved the best diagnostic performance, with an area under the receiver operating characteristic curve (AUROC) of 0.893 (95% CI: 0.847-0.932), sensitivity of 0.847 (95% CI: 0.692-0.944), and specificity of 0.810 (95% CI: 0.717-0.910) in the internal testing dataset. Consistent performance was observed in the external testing dataset (AUROC 0.871, sensitivity 0.792, specificity 0.829). The DLR model consistently outperformed both the R and CNN models. Moreover, endometrium-level ROIs yielded better results than uterine-corpus-level ROIs. This study demonstrates the feasibility and clinical value of AI-enhanced ultrasound analysis for EC detection. By integrating radiomics and deep learning features with SR-based image preprocessing, our model improves diagnostic specificity, reduces false positives, and mitigates operator-dependent variability. This non-invasive approach offers a more accurate and reliable tool for EC screening in postmenopausal women. Not applicable.

Quantitative ultrasound classification of healthy and chemically degraded ex-vivo cartilage.

Sorriento A, Guachi-Guachi L, Turini C, Lenzi E, Dolzani P, Lisignoli G, Kerdegari S, Valenza G, Canale C, Ricotti L, Cafarelli A

pubmed logopapersJul 1 2025
In this study, we explore the potential of ten quantitative (radiofrequency-based) ultrasound parameters to assess the progressive loss of collagen and proteoglycans, mimicking an osteoarthritis condition in ex-vivo bovine cartilage samples. Most analyzed metrics showed significant changes as the degradation progressed, especially with collagenase treatment. We propose for the first time a combination of these ultrasound parameters through machine learning models aimed at automatically identifying healthy and degraded cartilage samples. The random forest model showed good performance in distinguishing healthy cartilage from trypsin-treated samples, with an accuracy of 60%. The support vector machine demonstrated excellent accuracy (96%) in differentiating healthy cartilage from collagenase-degraded samples. Histological and mechanical analyses further confirmed these findings, with collagenase having a more pronounced impact on both mechanical and histological properties, compared to trypsin. These metrics were obtained using an ultrasound probe having a transmission frequency of 15 MHz, typically used for the diagnosis of musculoskeletal diseases, enabling a fully non-invasive procedure without requiring arthroscopic probes. As a perspective, the proposed quantitative ultrasound assessment has the potential to become a new standard for monitoring cartilage health, enabling the early detection of cartilage pathologies and timely interventions.

Development and validation of a machine learning model for central compartmental lymph node metastasis in solitary papillary thyroid microcarcinoma via ultrasound imaging features and clinical parameters.

Han H, Sun H, Zhou C, Wei L, Xu L, Shen D, Hu W

pubmed logopapersJul 1 2025
Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treatment decisions prior to microwave ablation of thyroid nodules. The objective of this study was to develop a predictive model for CCLNM in patients with solitary PTMC on the basis of a combination of ultrasound radiomics and clinical parameters. We retrospectively analyzed data from 480 patients diagnosed with PTMC via postoperative pathological examination. The patients were randomly divided into a training set (n = 336) and a validation set (n = 144) at a 7:3 ratio. The cohort was stratified into a metastasis group and a nonmetastasis group on the basis of postoperative pathological results. Ultrasound radiomic features were extracted from routine thyroid ultrasound images, and multiple feature selection methods were applied to construct radiomic models for each group. Independent risk factors, along with radiomics features identified through multivariate logistic regression analysis, were subsequently refined through additional feature selection techniques to develop combined predictive models. The performance of each model was then evaluated. The combined model, which incorporates age, the presence of Hashimoto's thyroiditis (HT), and radiomics features selected via an optimal feature selection approach (percentage-based), exhibited superior predictive efficacy, with AUC values of 0.767 (95% CI: 0.716-0.818) in the training set and 0.729 (95% CI: 0.648-0.810) in the validation set. A machine learning-based model combining ultrasound radiomics and clinical variables shows promise for the preoperative risk stratification of CCLNM in patients with PTMC. However, further validation in larger, more diverse cohorts is needed before clinical application. Not applicable.

Synthetic Versus Classic Data Augmentation: Impacts on Breast Ultrasound Image Classification.

Medghalchi Y, Zakariaei N, Rahmim A, Hacihaliloglu I

pubmed logopapersJul 1 2025
The effectiveness of deep neural networks (DNNs) for the ultrasound image analysis depends on the availability and accuracy of the training data. However, the large-scale data collection and annotation, particularly in medical fields, is often costly and time consuming, especially when healthcare professionals are already burdened with their clinical responsibilities. Ensuring that a model remains robust across different imaging conditions-such as variations in ultrasound devices and manual transducer operation-is crucial in the ultrasound image analysis. The data augmentation is a widely used solution, as it increases both the size and diversity of datasets, thereby enhancing the generalization performance of DNNs. With the advent of generative networks such as generative adversarial networks (GANs) and diffusion-based models, the synthetic data generation has emerged as a promising augmentation technique. However, comprehensive studies comparing classic and generative method-based augmentation methods are lacking, particularly in ultrasound-based breast cancer imaging, where variability in breast density, tumor morphology, and operator skill poses significant challenges. This study aims to compare the effectiveness of classic and generative network-based data augmentation techniques in improving the performance and robustness of breast ultrasound image classification models. Specifically, we seek to determine whether the computational intensity of generative networks is justified in data augmentation. This analysis will provide valuable insights into the role and benefits of each technique in enhancing the diagnostic accuracy of DNN for breast cancer diagnosis. The code for this work will be available at: ht.tps://github.com/yasamin-med/SCDA.git.

A Contrast-Enhanced Ultrasound Cine-Based Deep Learning Model for Predicting the Response of Advanced Hepatocellular Carcinoma to Hepatic Arterial Infusion Chemotherapy Combined With Systemic Therapies.

Han X, Peng C, Ruan SM, Li L, He M, Shi M, Huang B, Luo Y, Liu J, Wen H, Wang W, Zhou J, Lu M, Chen X, Zou R, Liu Z

pubmed logopapersJul 1 2025
Recently, a hepatic arterial infusion chemotherapy (HAIC)-associated combination therapeutic regimen, comprising HAIC and systemic therapies (molecular targeted therapy plus immunotherapy), referred to as HAIC combination therapy, has demonstrated promising anticancer effects. Identifying individuals who may potentially benefit from HAIC combination therapy could contribute to improved treatment decision-making for patients with advanced hepatocellular carcinoma (HCC). This dual-center study was a retrospective analysis of prospectively collected data with advanced HCC patients who underwent HAIC combination therapy and pretreatment contrast-enhanced ultrasound (CEUS) evaluations from March 2019 to March 2023. Two deep learning models, AE-3DNet and 3DNet, along with a time-intensity curve-based model, were developed for predicting therapeutic responses from pretreatment CEUS cine images. Diagnostic metrics, including the area under the receiver-operating-characteristic curve (AUC), were calculated to compare the performance of the models. Survival analysis was used to assess the relationship between predicted responses and prognostic outcomes. The model of AE-3DNet was constructed on the top of 3DNet, with innovative incorporation of spatiotemporal attention modules to enhance the capacity for dynamic feature extraction. 326 patients were included, 243 of whom formed the internal validation cohort, which was utilized for model development and fivefold cross-validation, while the rest formed the external validation cohort. Objective response (OR) or non-objective response (non-OR) were observed in 63% (206/326) and 37% (120/326) of the participants, respectively. Among the three efficacy prediction models assessed, AE-3DNet performed superiorly with AUC values of 0.84 and 0.85 in the internal and external validation cohorts, respectively. AE-3DNet's predicted response survival curves closely resembled actual clinical outcomes. The deep learning model of AE-3DNet developed based on pretreatment CEUS cine performed satisfactorily in predicting the responses of advanced HCC to HAIC combination therapy, which may serve as a promising tool for guiding combined therapy and individualized treatment strategies. Trial Registration: NCT02973685.

PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator-Part I: Numerical Methods.

Blanken N, Heiles B, Kuliesh A, Versluis M, Jain K, Maresca D, Lajoinie G

pubmed logopapersJul 1 2025
Ultrasound contrast agents (UCAs) have been used as vascular reporters for the past 40 years. The ability to enhance vascular features in ultrasound images with engineered lipid-shelled microbubbles has enabled breakthroughs such as the detection of tissue perfusion or super-resolution imaging of the microvasculature. However, advances in the field of contrast-enhanced ultrasound are hindered by experimental variables that are difficult to control in a laboratory setting, such as complex vascular geometries, the lack of ground truth, and tissue nonlinearities. In addition, the demand for large datasets to train deep learning-based computational ultrasound imaging methods calls for the development of a simulation tool that can reproduce the physics of ultrasound wave interactions with tissues and microbubbles. Here, we introduce a physically realistic contrast-enhanced ultrasound simulator (PROTEUS) consisting of four interconnected modules that account for blood flow dynamics in segmented vascular geometries, intravascular microbubble trajectories, ultrasound wave propagation, and nonlinear microbubble scattering. The first part of this study describes the numerical methods that enabled this development. We demonstrate that PROTEUS can generate contrast-enhanced radio-frequency (RF) data in various vascular architectures across the range of medical ultrasound frequencies. PROTEUS offers a customizable framework to explore novel ideas in the field of contrast-enhanced ultrasound imaging. It is released as an open-source tool for the scientific community.
Page 30 of 56556 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.