Ultrasound-based machine learning model to predict the risk of endometrial cancer among postmenopausal women.
Authors
Affiliations (4)
Affiliations (4)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Gynecology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. [email protected].
- Department of Ultrasound, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. [email protected].
Abstract
Current ultrasound-based screening for endometrial cancer (EC) primarily relies on endometrial thickness (ET) and morphological evaluation, which suffer from low specificity and high interobserver variability. This study aimed to develop and validate an artificial intelligence (AI)-driven diagnostic model to improve diagnostic accuracy and reduce variability. A total of 1,861 consecutive postmenopausal women were enrolled from two centers between April 2021 and April 2024. Super-resolution (SR) technique was applied to enhance image quality before feature extraction. Radiomics features were extracted using Pyradiomics, and deep learning features were derived from convolutional neural network (CNN). Three models were developed: (1) R model: radiomics-based machine learning (ML) algorithms; (2) CNN model: image-based CNN algorithms; (3) DLR model: a hybrid model combining radiomics and deep learning features with ML algorithms. Using endometrium-level regions of interest (ROI), the DLR model achieved the best diagnostic performance, with an area under the receiver operating characteristic curve (AUROC) of 0.893 (95% CI: 0.847-0.932), sensitivity of 0.847 (95% CI: 0.692-0.944), and specificity of 0.810 (95% CI: 0.717-0.910) in the internal testing dataset. Consistent performance was observed in the external testing dataset (AUROC 0.871, sensitivity 0.792, specificity 0.829). The DLR model consistently outperformed both the R and CNN models. Moreover, endometrium-level ROIs yielded better results than uterine-corpus-level ROIs. This study demonstrates the feasibility and clinical value of AI-enhanced ultrasound analysis for EC detection. By integrating radiomics and deep learning features with SR-based image preprocessing, our model improves diagnostic specificity, reduces false positives, and mitigates operator-dependent variability. This non-invasive approach offers a more accurate and reliable tool for EC screening in postmenopausal women. Not applicable.