Sort by:
Page 29 of 46453 results

Machine-learning modeL based on computed tomography body composition analysis for the estimation of resting energy expenditure: A pilot study.

Palmas F, Ciudin A, Melian J, Guerra R, Zabalegui A, Cárdenas G, Mucarzel F, Rodriguez A, Roson N, Burgos R, Hernández C, Simó R

pubmed logopapersMay 26 2025
The assessment of resting energy expenditure (REE) is a challenging task with the current existing methods. The reference method, indirect calorimetry (IC), is not widely available, and other surrogates, such as equations and bioimpedance (BIA) show poor agreement with IC. Body composition (BC), in particular muscle mass, plays an important role in REE. In recent years, computed tomography (CT) has emerged as a reliable tool for BC assessment, but its usefulness for the REE evaluation has not been examined. In the present study we have explored the usefulness of CT-scan imaging to assess the REE using AI machine-learning models. Single-centre observational cross-sectional pilot study from January to June 2022, including 90 fasting, clinically stable adults (≥18 years) with no contraindications for indirect calorimetry (IC), bioimpedance (BIA), or abdominal CT-scan. REE was measured using classical predictive equations, IC, BIA and skeletal CT-scan. The proposed model was based on a second-order linear regression with different input parameters, and the output corresponds to the estimated REE. The model was trained and tested using a cross-validation one-vs-all strategy including subjects with different characteristics. Data from 90 subjects were included in the final analysis. Bland-Altman plots showed that the CT-based estimation model had a mean bias of 0 kcal/day (LoA: -508.4 to 508.4) compared with IC, indicating better agreement than most predictive equations and similar agreement to BIA (bias 53.4 kcal/day, LoA: -475.7 to 582.4). Surprisingly, gender and BMI, ones of the mains variables included in all the BIA algorithms and mathematical equations were not relevant variables for REE calculated by means of AI coupled to skeletal CT scan. These findings were consistent with the results of other performance metrics, including mean absolute error (MAE), root mean square error (RMSE), and Lin's concordance correlation coefficient (CCC), which also favored the CT-based method over conventional equations. Our results suggest that the analysis of a CT-scan image by means of machine learning model is a reliable tool for the REE estimation. These findings have the potential to significantly change the paradigm and guidelines for nutritional assessment.

Impact of contrast-enhanced agent on segmentation using a deep learning-based software "Ai-Seg" for head and neck cancer.

Kihara S, Ueda Y, Harada S, Masaoka A, Kanayama N, Ikawa T, Inui S, Akagi T, Nishio T, Konishi K

pubmed logopapersMay 26 2025
In radiotherapy, auto-segmentation tools using deep learning assist in contouring organs-at-risk (OARs). We developed a segmentation model for head and neck (HN) OARs dedicated to contrast-enhanced (CE) computed tomography (CT) using the segmentation software, Ai-Seg, and compared the performance between CE and non-CE (nCE) CT. The retrospective study recruited 321 patients with HN cancers and trained a segmentation model using CE CT (CE model). The CE model was installed in Ai-Seg and applied to additional 25 patients with CE and nCE CT. The Dice similarity coefficient (DSC) and average Hausdorff distance (AHD) were calculated between the ground truth and Ai-Seg contours for brain, brainstem, chiasm, optic nerves, cochleae, oral cavity, parotid glands, pharyngeal constrictor muscle, and submandibular glands (SMGs). We compared the CE model and the existing model trained with nCE CT available in Ai-Seg for 6 OARs. The CE model obtained significantly higher DSCs on CE CT for parotid and SMGs compared to the existing model. The CE model provided significantly lower DSC values and higher AHD values on nCE CT for SMGs than on CE CT, but comparable values for other OARs. The CE model achieved significantly better performance than the existing model and can be used on nCE CT images without significant performance difference, except SMGs. Our results may facilitate the adoption of segmentation tools in clinical practice. We developed a segmentation model for HN OARs dedicated to CE CT using Ai-Seg and evaluated its usability on nCE CT.

Two birds with one stone: pre-TAVI coronary CT angiography combined with FFR helps screen for coronary stenosis.

Wang R, Pan D, Sun X, Yang G, Yao J, Shen X, Xiao W

pubmed logopapersMay 26 2025
Since coronary artery disease (CAD) is a common comorbidity in patients with aortic valve stenosis, invasive coronary angiography (ICA) can be avoided if significant CAD can be screened with the non-invasive coronary CT angiography (cCTA). This study aims to evaluate the ability of machine learning-based CT coronary fractional flow reserve (CT-FFR) derived from cCTA to aid in the diagnosis of comorbid CAD in patients undergoing transcatheter aortic valve implantation (TAVI). A total of 100 patients who underwent both cCTA and ICA assessments prior to TAVI procedure between January 2021 and July 2023 were included. Coronary stenosis was assessed using both cCTA data and machine learning-generated CT-FFR image information for patients/major coronary vessels. Coronary lesions with CT-FFR ≤ 0.80 were defined as hemodynamically significant, with ICA serving as the diagnostic gold standard. A total of 400 major coronary vessels were identified in 100 eligible patients who underwent TAVI. CT-FFR was 86.4% sensitive and 66.1% specific to diagnose CAD, with a positive predictive value (PPV) of 66.7% and a negative predictive value (NPV) of 86.0%. The diagnostic accuracy (Acc) was 75.0%, with a false positive rate (FPR) of 33.9%. At the vessel level, CT-FFR showed a sensitivity of 77.6% and a specificity of 76.9%. The PPV was 44.0% and the NPV was 93.6%. The Acc was 77.0% and the FPR was 23.1%. For all patient/vessel units, CT-FFR outperformed cCTA. Machine learning-based CT-FFR can effectively detect coronary hemodynamic abnormalities. Combined with preoperative cCTA in TAVI patients, it is an effective tool to rule out significant CAD, reducing unnecessary coronary angiography in this high-risk population. Not applicable.

Clinical, radiological, and radiomics feature-based explainable machine learning models for prediction of neurological deterioration and 90-day outcomes in mild intracerebral hemorrhage.

Zeng W, Chen J, Shen L, Xia G, Xie J, Zheng S, He Z, Deng L, Guo Y, Yang J, Lv Y, Qin G, Chen W, Yin J, Wu Q

pubmed logopapersMay 26 2025
The risks and prognosis of mild intracerebral hemorrhage (ICH) patients were easily overlooked by clinicians. Our goal was to use machine learning (ML) methods to predict mild ICH patients' neurological deterioration (ND) and 90-day prognosis. This prospective study recruited 257 patients with mild ICH for this study. After exclusions, 148 patients were included in the ND study and 144 patients in the 90-day prognosis study. We trained five ML models using filtered data, including clinical, traditional imaging, and radiomics indicators based on non-contrast computed tomography (NCCT). Additionally, we incorporated the Shapley Additive Explanation (SHAP) method to display key features and visualize the decision-making process of the model for each individual. A total of 21 (14.2%) mild ICH patients developed ND, and 35 (24.3%) mild ICH patients had a 90-day poor prognosis. In the validation set, the support vector machine (SVM) models achieved an AUC of 0.846 (95% confidence intervals (CI), 0.627-1.000) and an F1-score of 0.667 for predicting ND, and an AUC of 0.970 (95% CI, 0.928-1.000), and an F1-score of 0.846 for predicting 90-day prognosis. The SHAP analysis results indicated that several clinical features, the island sign, and the radiomics features of the hematoma were of significant value in predicting ND and 90-day prognosis. The ML models, constructed using clinical, traditional imaging, and radiomics indicators, demonstrated good classification performance in predicting ND and 90-day prognosis in patients with mild ICH, and have the potential to serve as an effective tool in clinical practice. Not applicable.

The extent of Skeletal muscle wasting in prolonged critical illness and its association with survival: insights from a retrospective single-center study.

Kolck J, Hosse C, Fehrenbach U, Beetz NL, Auer TA, Pille C, Geisel D

pubmed logopapersMay 26 2025
Muscle wasting in critically ill patients, particularly those with prolonged hospitalization, poses a significant challenge to recovery and long-term outcomes. The aim of this study was to characterize long-term muscle wasting trajectories in ICU patients with acute respiratory distress syndrome (ARDS) due to COVID-19 and acute pancreatitis (AP), to evaluate correlations between muscle wasting and patient outcomes, and to identify clinically feasible thresholds that have the potential to enhance patient care strategies. A collective of 154 ICU patients (100 AP and 54 COVID-19 ARDS) with a minimum ICU stay of 10 days and at least three abdominal CT scans were retrospectively analyzed. AI-driven segmentation of CT scans quantified changes in psoas muscle area (PMA). A mixed model analysis was used to assess the correlation between mortality and muscle wasting, Cox regression was applied to identify potential predictors of survival. Muscle loss rates, survival thresholds and outcome correlations were assessed using Kaplan-Meier and receiver operating characteristic (ROC) analyses. Muscle loss in ICU patients was most pronounced in the first two weeks, peaking at -2.42% and - 2.39% psoas muscle area (PMA) loss per day in weeks 1 and 2, respectively, followed by a progressive decline. The median total PMA loss was 48.3%, with significantly greater losses in non-survivors. Mixed model analysis confirmed correlation of muscle wasting with mortality. Cox regression identified visceral adipose tissue (VAT), sequential organ failure assessment (SOFA) score and muscle wasting as significant risk factors, while increased skeletal muscle area (SMA) was protective. ROC and Kaplan-Meier analyses showed strong correlations between PMA loss thresholds and survival, with daily loss > 4% predicting the worst survival (39.7%). To our knowledge, This is the first study to highlight the substantial progression of muscle wasting in prolonged hospitalized ICU patients. The mortality-related thresholds for muscle wasting rates identified in this study may provide a basis for clinical risk stratification. Future research should validate these findings in larger cohorts and explore strategies to mitigate muscle loss. Not applicable.

Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma.

Li L, Yang D, Wu Y, Sun R, Qin Y, Kang M, Deng X, Bu M, Li Z, Zeng Z, Zeng X, Jiang M, Chen BT

pubmed logopapersMay 26 2025
To develop and validate a machine learning model based on dual-energy computed tomography (DECT) for predicting cervical lymph node metastases (CLNM) in patients diagnosed with nasopharyngeal carcinoma (NPC). This prospective single-center study enrolled patients with NPC and the study assessment included both DECT and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Radiomics features were extracted from each region of interest (ROI) for cervical lymph nodes using arterial and venous phase images at 100 keV and 150 keV, either individually as non-fusion models or combined as fusion models on the DECT images. The performance of the random forest (RF) models, combined with radiomics features, was evaluated by area under the receiver operating characteristic curve (AUC) analysis. DeLong's test was employed to compare model performances, while decision curve analysis (DCA) assessed the clinical utility of the predictive models. Sixty-six patients with NPC were included for analysis, which was divided into a training set (n = 42) and a validation set (n = 22). A total of 13 radiomic models were constructed (4 non-fusion models and 9 fusion models). In the non-fusion models, when the threshold value exceeded 0.4, the venous phase at 100 keV (V100) (AUC, 0.9667; 95 % confidence interval [95 % CI], 0.9363-0.9901) model exhibited a higher net benefit than other non-fusion models. The V100 + V150 fusion model achieved the best performance, with an AUC of 0.9697 (95 % CI, 0.9393-0.9907). DECT-based radiomics effectively diagnosed CLNM in patients with NPC and may potentially be a valuable tool for clinical decision-making. This study improved pre-operative evaluation, treatment strategy selection, and prognostic evaluation for patients with nasopharyngeal carcinoma by combining DECT and radiomics to predict cervical lymph node status prior to treatment.

Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.

Yin Y, Jia S, Zheng J, Wang W, Wang Z, Lin J, Lin W, Feng C, Xia S, Ge W

pubmed logopapersMay 26 2025
Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables. In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed. The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups. LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.

Multimodal integration of longitudinal noninvasive diagnostics for survival prediction in immunotherapy using deep learning.

Yeghaian M, Bodalal Z, van den Broek D, Haanen JBAG, Beets-Tan RGH, Trebeschi S, van Gerven MAJ

pubmed logopapersMay 26 2025
Immunotherapies have revolutionized the landscape of cancer treatments. However, our understanding of response patterns in advanced cancers treated with immunotherapy remains limited. By leveraging routinely collected noninvasive longitudinal and multimodal data with artificial intelligence, we could unlock the potential to transform immunotherapy for cancer patients, paving the way for personalized treatment approaches. In this study, we developed a novel artificial neural network architecture, multimodal transformer-based simple temporal attention (MMTSimTA) network, building upon a combination of recent successful developments. We integrated pre- and on-treatment blood measurements, prescribed medications, and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict mortality at 3, 6, 9, and 12 months. Different variants of our extended MMTSimTA network were implemented and compared to baseline methods, incorporating intermediate and late fusion-based integration methods. The strongest prognostic performance was demonstrated using a variant of the MMTSimTA model with area under the curves of 0.84 ± 0.04, 0.83 ± 0.02, 0.82 ± 0.02, 0.81 ± 0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively. Our findings show that integrating noninvasive longitudinal data using our novel architecture yields an improved multimodal prognostic performance, especially in short-term survival prediction. Our study demonstrates that multimodal longitudinal integration of noninvasive data using deep learning may offer a promising approach for personalized prognostication in immunotherapy-treated cancer patients.

Evolution of deep learning tooth segmentation from CT/CBCT images: a systematic review and meta-analysis.

Kot WY, Au Yeung SY, Leung YY, Leung PH, Yang WF

pubmed logopapersMay 26 2025
Deep learning has been utilized to segment teeth from computed tomography (CT) or cone-beam CT (CBCT). However, the performance of deep learning is unknown due to multiple models and diverse evaluation metrics. This systematic review and meta-analysis aims to evaluate the evolution and performance of deep learning in tooth segmentation. We systematically searched PubMed, Web of Science, Scopus, IEEE Xplore, arXiv.org, and ACM for studies investigating deep learning in human tooth segmentation from CT/CBCT. Included studies were assessed using the Quality Assessment of Diagnostic Accuracy Study (QUADAS-2) tool. Data were extracted for meta-analyses by random-effects models. A total of 30 studies were included in the systematic review, and 28 of them were included for meta-analyses. Various deep learning algorithms were categorized according to the backbone network, encompassing single-stage convolutional models, convolutional models with U-Net architecture, Transformer models, convolutional models with attention mechanisms, and combinations of multiple models. Convolutional models with U-Net architecture were the most commonly used deep learning algorithms. The integration of attention mechanism within convolutional models has become a new topic. 29 evaluation metrics were identified, with Dice Similarity Coefficient (DSC) being the most popular. The pooled results were 0.93 [0.93, 0.93] for DSC, 0.86 [0.85, 0.87] for Intersection over Union (IoU), 0.22 [0.19, 0.24] for Average Symmetric Surface Distance (ASSD), 0.92 [0.90, 0.94] for sensitivity, 0.71 [0.26, 1.17] for 95% Hausdorff distance, and 0.96 [0.93, 0.98] for precision. No significant difference was observed in the segmentation of single-rooted or multi-rooted teeth. No obvious correlation between sample size and segmentation performance was observed. Multiple deep learning algorithms have been successfully applied to tooth segmentation from CT/CBCT and their evolution has been well summarized and categorized according to their backbone structures. In future, studies are needed with standardized protocols and open labelled datasets.

Automated landmark-based mid-sagittal plane: reliability for 3-dimensional mandibular asymmetry assessment on head CT scans.

Alt S, Gajny L, Tilotta F, Schouman T, Dot G

pubmed logopapersMay 26 2025
The determination of the mid-sagittal plane (MSP) on three-dimensional (3D) head imaging is key to the assessment of facial asymmetry. The aim of this study was to evaluate the reliability of an automated landmark-based MSP to quantify mandibular asymmetry on head computed tomography (CT) scans. A dataset of 368 CT scans, including orthognathic surgery patients, was automatically annotated with 3D cephalometric landmarks via a previously published deep learning-based method. Five of these landmarks were used to automatically construct an MSP orthogonal to the Frankfurt horizontal plane. The reliability of automatic MSP construction was compared with the reliability of manual MSP construction based on 6 manual localizations by 3 experienced operators on 19 randomly selected CT scans. The mandibular asymmetry of the 368 CT scans with respect to the MSP was calculated and compared with clinical expert judgment. The construction of the MSP was found to be highly reliable, both manually and automatically. The manual reproducibility 95% limit of agreement was less than 1 mm for -y translation and less than 1.1° for -x and -z rotation, and the automatic measurement lied within the confidence interval of the manual method. The automatic MSP construction was shown to be clinically relevant, with the mandibular asymmetry measures being consistent with the expertly assessed levels of asymmetry. The proposed automatic landmark-based MSP construction was found to be as reliable as manual construction and clinically relevant in assessing the mandibular asymmetry of 368 head CT scans. Once implemented in a clinical software, fully automated landmark-based MSP construction could be clinically used to assess mandibular asymmetry on head CT scans.
Page 29 of 46453 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.