Radiomics and deep learning methods for predicting the growth of subsolid nodules based on CT images.
Authors
Affiliations (4)
Affiliations (4)
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- Infervision Medical Technology Co., Ltd, Beijing, China.
- Department of Medical Imaging, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China.
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
Abstract
The growth of subsolid nodules (SSNs) is a strong predictor of lung adenocarcinoma. However, the heterogeneity in the biological behavior of SSNs poses significant challenges for clinical management. This study aimed to evaluate the clinical utility of deep learning and radiomics approaches in predicting SSN growth based on computed tomography (CT) images. A total of 353 patients with 387 SSNs were enrolled in this retrospective study. All cases were divided into growth (n = 195) and non-growth (n = 192) groups and were randomly assigned to the training (n = 247), validation (n = 62), and test sets (n = 78) in a ratio of 3:1:1. We obtained 1454 radiomics features from each volumetric region of interest (VOI). Pearson correlation coefficient and the least absolute shrinkage and selection operator (LASSO) methods were used for radiomics signature determination. A ResNet18 architecture was used to construct the deep-learning model. The 2 models were combined via a ResNet-based fusion network to construct an ensemble model. The area under the curve (AUC) was plotted and decision curve analysis (DCA) was performed to determine the clinical performance of the 3 models. The combined model (AUC = 0.926, 95% CI: 0.869-0.977) outperformed the radiomics (AUC = 0.894, 95% CI: 0.808-0.957) and deep-learning models (AUC = 0.802, 95% CI: 0.695-0.899) in the test set. The DeLong test results showed a statistically significant difference between the combined model and the deep-learning model (P = .012), supporting the clinical value of DCA. This study demonstrates that integrating radiomics with deep learning offers promising potential for the preoperative prediction of SSN growth.