Sort by:
Page 25 of 30293 results

Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.

Loap P, Monteil R, Kirova Y, Vu-Bezin J

pubmed logopapersJun 1 2025
Adjuvant radiotherapy is essential for reducing local recurrence and improving survival in breast cancer patients, but it carries a risk of ischemic cardiac toxicity, which increases with heart exposure. The isocentric lateral decubitus position, where the breast rests flat on a support, reduces heart exposure and leads to delivery of a more uniform dose. This position is particularly beneficial for patients with unique anatomies, such as those with pectus excavatum or larger breast sizes. While artificial intelligence (AI) algorithms for autocontouring have shown promise, they have not been tailored to this specific position. This study aimed to develop and evaluate a neural network-based autocontouring algorithm for patients treated in the isocentric lateral decubitus position. In this single-center study, 1189 breast cancer patients treated after breast-conserving surgery were included. Their simulation CT scans (1209 scans) were used to train and validate a neural network-based autocontouring algorithm (nnU-Net). Of these, 1087 scans were used for training, and 122 scans were reserved for validation. The algorithm's performance was assessed using the Dice similarity coefficient (DSC) to compare the automatically delineated volumes with manual contours. A clinical evaluation of the algorithm was performed on 30 additional patients, with contours rated by two expert radiation oncologists. The neural network-based algorithm achieved a segmentation time of approximately 4 min, compared to 20 min for manual segmentation. The DSC values for the validation cohort were 0.88 for the treated breast, 0.90 for the heart, 0.98 for the right lung, and 0.97 for the left lung. In the clinical evaluation, 90% of the automatically contoured breast volumes were rated as acceptable without corrections, while the remaining 10% required minor adjustments. All lung contours were accepted without corrections, and heart contours were rated as acceptable in 93.3% of cases, with minor corrections needed in 6.6% of cases. This neural network-based autocontouring algorithm offers a practical, time-saving solution for breast cancer radiotherapy planning in the isocentric lateral decubitus position. Its strong geometric performance, clinical acceptability, and significant time efficiency make it a valuable tool for modern radiotherapy practices, particularly in high-volume centers.

Incorporating radiomic MRI models for presurgical response assessment in patients with early breast cancer undergoing neoadjuvant systemic therapy: Collaborative insights from breast oncologists and radiologists.

Gaudio M, Vatteroni G, De Sanctis R, Gerosa R, Benvenuti C, Canzian J, Jacobs F, Saltalamacchia G, Rizzo G, Pedrazzoli P, Santoro A, Bernardi D, Zambelli A

pubmed logopapersJun 1 2025
The assessment of neoadjuvant treatment's response is critical for selecting the most suitable therapeutic options for patients with breast cancer to reduce the need for invasive local therapies. Breast magnetic resonance imaging (MRI) is so far one of the most accurate approaches for assessing pathological complete response, although this is limited by the qualitative and subjective nature of radiologists' assessment, often making it insufficient for deciding whether to forgo additional locoregional therapy measures. To increase the accuracy and prediction of radiomic MRI with the aid of machine learning models and deep learning methods, as part of artificial intelligence, have been used to analyse the different subtypes of breast cancer and the specific changes observed before and after therapy. This review discusses recent advancements in radiomic MRI models for presurgical response assessment for patients with early breast cancer receiving preoperative treatments, with a focus on their implications for clinical practice.

DCE-MRI based deep learning analysis of intratumoral subregion for predicting Ki-67 expression level in breast cancer.

Ding Z, Zhang C, Xia C, Yao Q, Wei Y, Zhang X, Zhao N, Wang X, Shi S

pubmed logopapersJun 1 2025
To evaluate whether deep learning (DL) analysis of intratumor subregion based on dynamic contrast-enhanced MRI (DCE-MRI) can help predict Ki-67 expression level in breast cancer. A total of 290 breast cancer patients from two hospitals were retrospectively collected. A k-means clustering algorithm confirmed subregions of tumor. DL features of whole tumor and subregions were extracted from DCE-MRI images based on 3D ResNet18 pre-trained model. The logistic regression model was constructed after dimension reduction. Model performance was assessed using the area under the curve (AUC), and clinical value was demonstrated through decision curve analysis (DCA). The k-means clustering method clustered the tumor into two subregions (habitat 1 and habitat 2) based on voxel values. Both the habitat 1 model (validation set: AUC = 0.771, 95 %CI: 0.642-0.900 and external test set: AUC = 0.794, 95 %CI: 0.696-0.891) and the habitat 2 model (AUC = 0.734, 95 %CI: 0.605-0.862 and AUC = 0.756, 95 %CI: 0.646-0.866) showed better predictive capabilities for Ki-67 expression level than the whole tumor model (AUC = 0.686, 95 %CI: 0.550-0.823 and AUC = 0.680, 95 %CI: 0.555-0.804). The combined model based on the two subregions further enhanced the predictive capability (AUC = 0.808, 95 %CI: 0.696-0.921 and AUC = 0.842, 95 %CI: 0.758-0.926), and it demonstrated higher clinical value than other models in DCA. The deep learning model derived from subregion of tumor showed better performance for predicting Ki-67 expression level in breast cancer patients. Additionally, the model that integrated two subregions further enhanced the predictive performance.

Advanced image preprocessing and context-aware spatial decomposition for enhanced breast cancer segmentation.

Kalpana G, Deepa N, Dhinakaran D

pubmed logopapersJun 1 2025
The segmentation of breast cancer diagnosis and medical imaging contains issues such as noise, variation in contrast, and low resolutions which make it challenging to distinguish malignant sites. In this paper, we propose a new solution that integrates with AIPT (Advanced Image Preprocessing Techniques) and CASDN (Context-Aware Spatial Decomposition Network) to overcome these problems. The preprocessing pipeline apply bunch of methods including Adaptive Thresholding, Hierarchical Contrast Normalization, Contextual Feature Augmentation, Multi-Scale Region Enhancement, and Dynamic Histogram Equalization for image quality. These methods smooth edges, equalize the contrasting picture and inlay contextual details in a way which effectively eliminate the noise and make the images clearer and with fewer distortions. Experimental outcomes demonstrate its effectiveness by delivering a Dice Coefficient of 0.89, IoU of 0.85, and a Hausdorff Distance of 5.2 demonstrating its enhanced capability in segmenting significant tumor margins over other techniques. Furthermore, the use of the improved preprocessing pipeline benefits classification models with improved Convolutional Neural Networks having a classification accuracy of 85.3 % coupled with AUC-ROC of 0.90 which shows a significant enhancement from conventional techniques.•Enhanced segmentation accuracy with advanced preprocessing and CASDN, achieving superior performance metrics.•Robust multi-modality compatibility, ensuring effectiveness across mammograms, ultrasounds, and MRI scans.

Image normalization techniques and their effect on the robustness and predictive power of breast MRI radiomics.

Schwarzhans F, George G, Escudero Sanchez L, Zaric O, Abraham JE, Woitek R, Hatamikia S

pubmed logopapersJun 1 2025
Radiomics analysis has emerged as a promising approach to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on acquisition and pre-processing techniques used. In this study, we aim to investigate the effect of various image normalization techniques on robustness of radiomics features extracted from breast cancer patient MRI scans. MRI scans from the publicly available MAMA-MIA dataset and an internal breast MRI test set depicting triple negative breast cancer (TNBC) were used. We compared the effect of commonly used image normalization techniques on radiomics feature robustnessusing Concordance-Correlation-Coefficient (CCC) between multiple combinations of normalization approaches. We also trained machine learning-based prediction models of pathologic complete response (pCR) on radiomics after different normalization techniques were used and compared their areas under the receiver operating characteristic curve (ROC-AUC). For predicting complete pathological response from pre-treatment breast cancer MRI radiomics, the highest overall ROC-AUC was achieved by using a combination of three different normalization techniques indicating their potentially powerful role when working with heterogeneous imaging data. The effect of normalization was more pronounced with smaller training data and normalization may be less important with increasing abundance of training data. Additionally, we observed considerable differences between MRI data sets and their feature robustness towards normalization. Overall, we were able to demonstrate the importance of selecting and standardizing normalization methods for accurate and reliable radiomics analysis in breast MRI scans especially with small training data sets.

A European Multi-Center Breast Cancer MRI Dataset

Gustav Müller-Franzes, Lorena Escudero Sánchez, Nicholas Payne, Alexandra Athanasiou, Michael Kalogeropoulos, Aitor Lopez, Alfredo Miguel Soro Busto, Julia Camps Herrero, Nika Rasoolzadeh, Tianyu Zhang, Ritse Mann, Debora Jutz, Maike Bode, Christiane Kuhl, Wouter Veldhuis, Oliver Lester Saldanha, JieFu Zhu, Jakob Nikolas Kather, Daniel Truhn, Fiona J. Gilbert

arxiv logopreprintMay 31 2025
Detecting breast cancer early is of the utmost importance to effectively treat the millions of women afflicted by breast cancer worldwide every year. Although mammography is the primary imaging modality for screening breast cancer, there is an increasing interest in adding magnetic resonance imaging (MRI) to screening programmes, particularly for women at high risk. Recent guidelines by the European Society of Breast Imaging (EUSOBI) recommended breast MRI as a supplemental screening tool for women with dense breast tissue. However, acquiring and reading MRI scans requires significantly more time from expert radiologists. This highlights the need to develop new automated methods to detect cancer accurately using MRI and Artificial Intelligence (AI), which have the potential to support radiologists in breast MRI interpretation and classification and help detect cancer earlier. For this reason, the ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.

Bias in Artificial Intelligence: Impact on Breast Imaging.

Net JM, Collado-Mesa F

pubmed logopapersMay 30 2025
Artificial intelligence (AI) in breast imaging has garnered significant attention given the numerous reports of improved efficiency, accuracy, and the potential to bridge the gap of expanded volume in the face of limited physician resources. While AI models are developed with specific data points, on specific equipment, and in specific populations, the real-world clinical environment is dynamic, and patient populations are diverse, which can impact generalizability and widespread adoption of AI in clinical practice. Implementation of AI models into clinical practice requires focused attention on the potential of AI bias impacting outcomes. The following review presents the concept, sources, and types of AI bias to be considered when implementing AI models and offers suggestions on strategies to mitigate AI bias in practice.

Mammogram mastery: Breast cancer image classification using an ensemble of deep learning with explainable artificial intelligence.

Kumar Mondal P, Jahan MK, Byeon H

pubmed logopapersMay 30 2025
Breast cancer is a serious public health problem and is one of the leading causes of cancer-related deaths in women worldwide. Early detection of the disease can significantly increase the chances of survival. However, manual analysis of mammogram mastery images is complex and time-consuming, which can lead to disagreements among experts. For this reason, automated diagnostic systems can play a significant role in increasing the accuracy and efficiency of diagnosis. In this study, we present an effective deep learning (DL) method, which classifies mammogram mastery images into cancer and noncancer categories using a collected dataset. Our model is pretrained based on the Inception V3 architecture. First, we run 5-fold cross-validation tests on the fully trained and fine-tuned Inception V3 model. Next, we apply a combined method based on likelihood and mean, where the fine-tuned Inception V3 model demonstrated superior performance in classification. Our DL model achieved 99% accuracy and 99% F1 score. In addition, interpretable AI techniques were used to enhance the transparency of the classification process. The finely tuned Inception V3 model demonstrated the highest performance in classification, confirming its effectiveness in automatic breast cancer detection. The experimental results clearly indicate that our proposed DL-based method for breast cancer image classification is highly effective, especially its application in image-based diagnostic methods. This study brings to the fore the huge potential of AI-based solutions, which can play a significant role in increasing the accuracy and reliability of breast cancer diagnosis.

Artificial Intelligence for Assessment of Digital Mammography Positioning Reveals Persistent Challenges.

Margolies LR, Spear GG, Payne JI, Iles SE, Abdolell M

pubmed logopapersMay 30 2025
Mammographic breast cancer detection depends on high-quality positioning, which is traditionally assessed and monitored subjectively. This study used artificial intelligence (AI) to evaluate mammography positioning on digital screening mammograms to identify and quantify unmet mammography positioning quality (MPQ). Data were collected within an IRB-approved collaboration. In total, 126 367 digital mammography studies (553 339 images) were processed. Unmet MPQ criteria, including exaggeration, portion cutoff, posterior tissue missing, nipple not in profile, too high on image receptor, inadequate pectoralis length, sagging, and posterior nipple line (PNL) length difference, were evaluated using MPQ AI algorithms. The similarity of unmet MPQ occurrence and rank order was compared for each health system. Altogether, 163 759 and 219 785 unmet MPQ criteria were identified, respectively, at the health systems. The rank order and the probability distribution of the unmet MPQ criteria were not statistically significantly different between health systems (P = .844 and P = .92, respectively). The 3 most-common unmet MPQ criteria were: short PNL length on the craniocaudal (CC) view, inadequate pectoralis muscle, and excessive exaggeration on the CC view. The percentages of unmet positioning criteria out of the total potential unmet positioning criteria at health system 1 and health system 2 were 8.4% (163 759/1 949 922) and 7.3% (219 785/3 030 129), respectively. Artificial intelligence identified a similar distribution of unmet MPQ criteria in 2 health systems' daily work. Knowledge of current commonly unmet MPQ criteria can facilitate the improvement of mammography quality through tailored education strategies.

Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population

Isarun Chamveha, Supphanut Chaiyungyuen, Sasinun Worakriangkrai, Nattawadee Prasawang, Warasinee Chaisangmongkon, Pornpim Korpraphong, Voraparee Suvannarerg, Shanigarn Thiravit, Chalermdej Kannawat, Kewalin Rungsinaporn, Suwara Issaragrisil, Payia Chadbunchachai, Pattiya Gatechumpol, Chawiporn Muktabhant, Patarachai Sereerat

arxiv logopreprintMay 29 2025
This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.
Page 25 of 30293 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.