Bias in Artificial Intelligence: Impact on Breast Imaging.

Authors

Net JM,Collado-Mesa F

Affiliations (1)

  • Department of Radiology, University of Miami Miller School of Medicine, Miami, FL,  USA.

Abstract

Artificial intelligence (AI) in breast imaging has garnered significant attention given the numerous reports of improved efficiency, accuracy, and the potential to bridge the gap of expanded volume in the face of limited physician resources. While AI models are developed with specific data points, on specific equipment, and in specific populations, the real-world clinical environment is dynamic, and patient populations are diverse, which can impact generalizability and widespread adoption of AI in clinical practice. Implementation of AI models into clinical practice requires focused attention on the potential of AI bias impacting outcomes. The following review presents the concept, sources, and types of AI bias to be considered when implementing AI models and offers suggestions on strategies to mitigate AI bias in practice.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.