Sort by:
Page 23 of 58575 results

Dynamic glucose enhanced imaging using direct water saturation.

Knutsson L, Yadav NN, Mohammed Ali S, Kamson DO, Demetriou E, Seidemo A, Blair L, Lin DD, Laterra J, van Zijl PCM

pubmed logopapersJul 1 2025
Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based linewidth (LW) broadening of the direct water saturation (DS) curve of the water saturation spectrum (Z-spectrum) during and after glucose infusion (DS-DGE MRI). To estimate the glucose-infusion-induced LW changes (ΔLW), Bloch-McConnell simulations were performed for normoglycemia and hyperglycemia in blood, gray matter (GM), white matter (WM), CSF, and malignant tumor tissue. Whole-brain DS-DGE imaging was implemented at 3 T using dynamic Z-spectral acquisitions (1.2 s per offset frequency, 38 s per spectrum) and assessed on four brain tumor patients using infusion of 35 g of D-glucose. To assess ΔLW, a deep learning-based Lorentzian fitting approach was used on voxel-based DS spectra acquired before, during, and post-infusion. Area-under-the-curve (AUC) images, obtained from the dynamic ΔLW time curves, were compared qualitatively to perfusion-weighted imaging parametric maps. In simulations, ΔLW was 1.3%, 0.30%, 0.29/0.34%, 7.5%, and 13% in arterial blood, venous blood, GM/WM, malignant tumor tissue, and CSF, respectively. In vivo, ΔLW was approximately 1% in GM/WM, 5% to 20% for different tumor types, and 40% in CSF. The resulting DS-DGE AUC maps clearly outlined lesion areas. DS-DGE MRI is highly promising for assessing D-glucose uptake. Initial results in brain tumor patients show high-quality AUC maps of glucose-induced line broadening and DGE-based lesion enhancement similar and/or complementary to perfusion-weighted imaging.

A hybrid XAI-driven deep learning framework for robust GI tract disease diagnosis.

Dahan F, Shah JH, Saleem R, Hasnain M, Afzal M, Alfakih TM

pubmed logopapersJul 1 2025
The stomach is one of the main digestive organs in the GIT, essential for digestion and nutrient absorption. However, various gastrointestinal diseases, including gastritis, ulcers, and cancer, affect health and quality of life severely. The precise diagnosis of gastrointestinal (GI) tract diseases is a significant challenge in the field of healthcare, as misclassification leads to late prescriptions and negative consequences for patients. Even with the advancement in machine learning and explainable AI for medical image analysis, existing methods tend to have high false negative rates which compromise critical disease cases. This paper presents a hybrid deep learning based explainable artificial intelligence (XAI) approach to improve the accuracy of gastrointestinal disorder diagnosis, including stomach diseases, from images acquired endoscopically. Swin Transformer with DCNN (EfficientNet-B3, ResNet-50) is integrated to improve both the accuracy of diagnostics and the interpretability of the model to extract robust features. Stacked machine learning classifiers with meta-loss and XAI techniques (Grad-CAM) are combined to minimize false negatives, which helps in early and accurate medical diagnoses in GI tract disease evaluation. The proposed model successfully achieved an accuracy of 93.79% with a lower misclassification rate, which is effective for gastrointestinal tract disease classification. Class-wise performance metrics, such as precision, recall, and F1-score, show considerable improvements with false-negative rates being reduced. AI-driven GI tract disease diagnosis becomes more accessible for medical professionals through Grad-CAM because it provides visual explanations about model predictions. This study makes the prospect of using a synergistic DL with XAI open for improvement towards early diagnosis with fewer human errors and also guiding doctors handling gastrointestinal diseases.

Impact of CT reconstruction algorithms on pericoronary and epicardial adipose tissue attenuation.

Xiao H, Wang X, Yang P, Wang L, Xi J, Xu J

pubmed logopapersJul 1 2025
This study aims to investigate the impact of adaptive statistical iterative reconstruction-Veo (ASIR-V) and deep learning image reconstruction (DLIR) algorithms on the quantification of pericoronary adipose tissue (PCAT) and epicardial adipose tissue (EAT). Furthermore, we propose to explore the feasibility of correcting the effects through fat threshold adjustment. A retrospective analysis was conducted on the imaging data of 134 patients who underwent coronary CT angiography (CCTA) between December 2023 and January 2024. These data were reconstructed into seven datasets using filtered back projection (FBP), ASIR-V at three different intensities (ASIR-V 30%, ASIR-V 50%, ASIR-V 70%), and DLIR at three different intensities (DLIR-L, DLIR-M, DLIR-H). Repeated-measures ANOVA was used to compare differences in fat, PCAT and EAT attenuation values among the reconstruction algorithms, and Bland-Altman plots were used to analyze the agreement between ASIR-V or DLIR and FBP algorithms in PCAT attenuation values. Compared to FBP, ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, DLIR-M, and DLIR-H significantly increased fat attenuation values (-103.91 ± 12.99 HU, -102.53 ± 12.68 HU, -101.14 ± 12.78 HU, -101.81 ± 12.41 HU, -100.87 ± 12.25 HU, -99.08 ± 12.00 HU vs. -105.95 ± 13.01 HU, all p < 0.001). When the fat threshold was set at -190 to -30 HU, ASIR-V and DLIR algorithms significantly increased PCAT and EAT attenuation values compared to FBP algorithm (all p < 0.05), with these values increasing as the reconstruction intensity level increased. After correction with a fat threshold of -200 to -35 HU for ASIR-V 30 %, -200 to -40 HU for ASIR-V 50 % and DLIR-L, and -200 to -45 HU for ASIR-V 70 %, DLIR-M, and DLIR-H, the mean differences in PCAT attenuation values between ASIR-V or DLIR and FBP algorithms decreased (-0.03 to 1.68 HU vs. 2.35 to 8.69 HU), and no significant difference was found in PCAT attenuation values between FBP and ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, and DLIR-M (all p > 0.05). Compared to the FBP algorithm, ASIR-V and DLIR algorithms increase PCAT and EAT attenuation values. Adjusting the fat threshold can mitigate the impact of ASIR-V and DLIR algorithms on PCAT attenuation values.

CXR-LLaVA: a multimodal large language model for interpreting chest X-ray images.

Lee S, Youn J, Kim H, Kim M, Yoon SH

pubmed logopapersJul 1 2025
This study aimed to develop an open-source multimodal large language model (CXR-LLaVA) for interpreting chest X-ray images (CXRs), leveraging recent advances in large language models (LLMs) to potentially replicate the image interpretation skills of human radiologists. For training, we collected 592,580 publicly available CXRs, of which 374,881 had labels for certain radiographic abnormalities (Dataset 1) and 217,699 provided free-text radiology reports (Dataset 2). After pre-training a vision transformer with Dataset 1, we integrated it with an LLM influenced by the LLaVA network. Then, the model was fine-tuned, primarily using Dataset 2. The model's diagnostic performance for major pathological findings was evaluated, along with the acceptability of radiologic reports by human radiologists, to gauge its potential for autonomous reporting. The model demonstrated impressive performance in test sets, achieving an average F1 score of 0.81 for six major pathological findings in the MIMIC internal test set and 0.56 for six major pathological findings in the external test set. The model's F1 scores surpassed those of GPT-4-vision and Gemini-Pro-Vision in both test sets. In human radiologist evaluations of the external test set, the model achieved a 72.7% success rate in autonomous reporting, slightly below the 84.0% rate of ground truth reports. This study highlights the significant potential of multimodal LLMs for CXR interpretation, while also acknowledging the performance limitations. Despite these challenges, we believe that making our model open-source will catalyze further research, expanding its effectiveness and applicability in various clinical contexts. Question How can a multimodal large language model be adapted to interpret chest X-rays and generate radiologic reports? Findings The developed CXR-LLaVA model effectively detects major pathological findings in chest X-rays and generates radiologic reports with a higher accuracy compared to general-purpose models. Clinical relevance This study demonstrates the potential of multimodal large language models to support radiologists by autonomously generating chest X-ray reports, potentially reducing diagnostic workloads and improving radiologist efficiency.

Contrast-enhanced mammography-based interpretable machine learning model for the prediction of the molecular subtype breast cancers.

Ma M, Xu W, Yang J, Zheng B, Wen C, Wang S, Xu Z, Qin G, Chen W

pubmed logopapersJul 1 2025
This study aims to establish a machine learning prediction model to explore the correlation between contrast-enhanced mammography (CEM) imaging features and molecular subtypes of mass-type breast cancer. This retrospective study included women with breast cancer who underwent CEM preoperatively between 2018 and 2021. We included 241 patients, which were randomly assigned to either a training or a test set in a 7:3 ratio. Twenty-one features were visually described, including four clinical features and seventeen radiological features, these radiological features which extracted from the CEM. Three binary classifications of subtypes were performed: Luminal vs. non-Luminal, HER2-enriched vs. non-HER2-enriched, and triple-negative (TNBC) vs. non-triple-negative. A multinomial naive Bayes (MNB) machine learning scheme was employed for the classification, and the least absolute shrink age and selection operator method were used to select the most predictive features for the classifiers. The classification performance was evaluated using the area under the receiver operating characteristic curve. We also utilized SHapley Additive exPlanation (SHAP) values to explain the prediction model. The model that used a combination of low energy (LE) and dual-energy subtraction (DES) achieved the best performance compared to using either of the two images alone, yielding an area under the receiver operating characteristic curve of 0.798 for Luminal vs. non-Luminal subtypes, 0.695 for TNBC vs. non-TNBC, and 0.773 for HER2-enriched vs. non-HER2-enriched. The SHAP algorithm shows that "LE_mass_margin_spiculated," "DES_mass_enhanced_margin_spiculated," and "DES_mass_internal_enhancement_homogeneous" have the most significant impact on the model's performance in predicting Luminal and non-Luminal breast cancer. "mass_calcification_relationship_no," "calcification_ type_no," and "LE_mass_margin_spiculated" have a considerable impact on the model's performance in predicting HER2 and non-HER2 breast cancer. The radiological characteristics of breast tumors extracted from CEM were found to be associated with breast cancer subtypes in our study. Future research is needed to validate these findings.

Radiomics for lung cancer diagnosis, management, and future prospects.

Boubnovski Martell M, Linton-Reid K, Chen M, Aboagye EO

pubmed logopapersJul 1 2025
Lung cancer remains the leading cause of cancer-related mortality worldwide, with its early detection and effective treatment posing significant clinical challenges. Radiomics, the extraction of quantitative features from medical imaging, has emerged as a promising approach for enhancing diagnostic accuracy, predicting treatment responses, and personalising patient care. This review explores the role of radiomics in lung cancer diagnosis and management, with methods ranging from handcrafted radiomics to deep learning techniques that can capture biological intricacies. The key applications are highlighted across various stages of lung cancer care, including nodule detection, histology prediction, and disease staging, where artificial intelligence (AI) models demonstrate superior specificity and sensitivity. The article also examines future directions, emphasising the integration of large language models, explainable AI (XAI), and super-resolution imaging techniques as transformative developments. By merging diverse data sources and incorporating interpretability into AI models, radiomics stands poised to redefine clinical workflows, offering more robust and reliable tools for lung cancer diagnosis, treatment planning, and outcome prediction. These advancements underscore radiomics' potential in supporting precision oncology and improving patient outcomes through data-driven insights.

The Evolution of Radiology Image Annotation in the Era of Large Language Models.

Flanders AE, Wang X, Wu CC, Kitamura FC, Shih G, Mongan J, Peng Y

pubmed logopapersJul 1 2025
Although there are relatively few diverse, high-quality medical imaging datasets on which to train computer vision artificial intelligence models, even fewer datasets contain expertly classified observations that can be repurposed to train or test such models. The traditional annotation process is laborious and time-consuming. Repurposing annotations and consolidating similar types of annotations from disparate sources has never been practical. Until recently, the use of natural language processing to convert a clinical radiology report into labels required custom training of a language model for each use case. Newer technologies such as large language models have made it possible to generate accurate and normalized labels at scale, using only clinical reports and specific prompt engineering. The combination of automatically generated labels extracted and normalized from reports in conjunction with foundational image models provides a means to create labels for model training. This article provides a short history and review of the annotation and labeling process of medical images, from the traditional manual methods to the newest semiautomated methods that provide a more scalable solution for creating useful models more efficiently. <b>Keywords:</b> Feature Detection, Diagnosis, Semi-supervised Learning © RSNA, 2025.

Use of Artificial Intelligence and Machine Learning in Critical Care Ultrasound.

Peck M, Conway H

pubmed logopapersJul 1 2025
This article explores the transformative potential of artificial intelligence (AI) in critical care ultrasound AI technologies, notably deep learning and convolutional neural networks, now assisting in image acquisition, interpretation, and quality assessment, streamlining workflow and reducing operator variability. By automating routine tasks, AI enhances diagnostic accuracy and bridges training gaps, potentially democratizing advanced ultrasound techniques. Furthermore, AI's integration into tele-ultrasound systems shows promise in extending expert-level diagnostics to underserved areas, significantly broadening access to quality care. The article highlights the ongoing need for explainable AI systems to gain clinician trust and facilitate broader adoption.

Hybrid model integration with explainable AI for brain tumor diagnosis: a unified approach to MRI analysis and prediction.

Vamsidhar D, Desai P, Joshi S, Kolhar S, Deshpande N, Gite S

pubmed logopapersJul 1 2025
Effective treatment for brain tumors relies on accurate detection because this is a crucial health condition. Medical imaging plays a pivotal role in improving tumor detection and diagnosis in the early stage. This study presents two approaches to the tumor detection problem focusing on the healthcare domain. A combination of image processing, vision transformer (ViT), and machine learning algorithms is the first approach that focuses on analyzing medical images. The second approach is the parallel model integration technique, where we first integrate two pre-trained deep learning models, ResNet101, and Xception, followed by applying local interpretable model-agnostic explanations (LIME) to explain the model. The results obtained an accuracy of 98.17% for the combination of vision transformer, random forest and contrast-limited adaptive histogram equalization and 99. 67% for the parallel model integration (ResNet101 and Xception). Based on these results, this paper proposed the deep learning approach-parallel model integration technique as the most effective method. Future work aims to extend the model to multi-class classification for tumor type detection and improve model generalization for broader applicability.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.
Page 23 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.