Sort by:
Page 23 of 91907 results

A Hybrid CNN-VSSM model for Multi-View, Multi-Task Mammography Analysis: Robust Diagnosis with Attention-Based Fusion

Yalda Zafari, Roaa Elalfy, Mohamed Mabrok, Somaya Al-Maadeed, Tamer Khattab, Essam A. Rashed

arxiv logopreprintJul 22 2025
Early and accurate interpretation of screening mammograms is essential for effective breast cancer detection, yet it remains a complex challenge due to subtle imaging findings and diagnostic ambiguity. Many existing AI approaches fall short by focusing on single view inputs or single-task outputs, limiting their clinical utility. To address these limitations, we propose a novel multi-view, multitask hybrid deep learning framework that processes all four standard mammography views and jointly predicts diagnostic labels and BI-RADS scores for each breast. Our architecture integrates a hybrid CNN VSSM backbone, combining convolutional encoders for rich local feature extraction with Visual State Space Models (VSSMs) to capture global contextual dependencies. To improve robustness and interpretability, we incorporate a gated attention-based fusion module that dynamically weights information across views, effectively handling cases with missing data. We conduct extensive experiments across diagnostic tasks of varying complexity, benchmarking our proposed hybrid models against baseline CNN architectures and VSSM models in both single task and multi task learning settings. Across all tasks, the hybrid models consistently outperform the baselines. In the binary BI-RADS 1 vs. 5 classification task, the shared hybrid model achieves an AUC of 0.9967 and an F1 score of 0.9830. For the more challenging ternary classification, it attains an F1 score of 0.7790, while in the five-class BI-RADS task, the best F1 score reaches 0.4904. These results highlight the effectiveness of the proposed hybrid framework and underscore both the potential and limitations of multitask learning for improving diagnostic performance and enabling clinically meaningful mammography analysis.

Dyna3DGR: 4D Cardiac Motion Tracking with Dynamic 3D Gaussian Representation

Xueming Fu, Pei Wu, Yingtai Li, Xin Luo, Zihang Jiang, Junhao Mei, Jian Lu, Gao-Jun Teng, S. Kevin Zhou

arxiv logopreprintJul 22 2025
Accurate analysis of cardiac motion is crucial for evaluating cardiac function. While dynamic cardiac magnetic resonance imaging (CMR) can capture detailed tissue motion throughout the cardiac cycle, the fine-grained 4D cardiac motion tracking remains challenging due to the homogeneous nature of myocardial tissue and the lack of distinctive features. Existing approaches can be broadly categorized into image based and representation-based, each with its limitations. Image-based methods, including both raditional and deep learning-based registration approaches, either struggle with topological consistency or rely heavily on extensive training data. Representation-based methods, while promising, often suffer from loss of image-level details. To address these limitations, we propose Dynamic 3D Gaussian Representation (Dyna3DGR), a novel framework that combines explicit 3D Gaussian representation with implicit neural motion field modeling. Our method simultaneously optimizes cardiac structure and motion in a self-supervised manner, eliminating the need for extensive training data or point-to-point correspondences. Through differentiable volumetric rendering, Dyna3DGR efficiently bridges continuous motion representation with image-space alignment while preserving both topological and temporal consistency. Comprehensive evaluations on the ACDC dataset demonstrate that our approach surpasses state-of-the-art deep learning-based diffeomorphic registration methods in tracking accuracy. The code will be available in https://github.com/windrise/Dyna3DGR.

MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation

Nand Kumar Yadav, Rodrigue Rizk, Willium WC Chen, KC

arxiv logopreprintJul 22 2025
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP

MAN-GAN: a mask-adaptive normalization based generative adversarial networks for liver multi-phase CT image generation.

Zhao W, Chen W, Fan L, Shang Y, Wang Y, Situ W, Li W, Liu T, Yuan Y, Liu J

pubmed logopapersJul 22 2025
Liver multiphase enhanced computed tomography (MPECT) is vital in clinical practice, but its utility is limited by various factors. We aimed to develop a deep learning network capable of automatically generating MPECT images from standard non-contrast CT scans. Dataset 1 included 374 patients and was divided into three parts: a training set, a validation set and a test set. Dataset 2 included 144 patients with one specific liver disease and was used as an internal test dataset. We further collected another dataset comprising 83 patients for external validation. Then, we propose a Mask-Adaptive Normalization-based Generative Adversarial Network with Cycle-Consistency Loss (MAN-GAN) to achieve non-contrast CT to MPECT translation. To assess the efficiency of MAN-GAN, we conducted a comparative analysis with state-of-the-art methods commonly employed in diverse medical image synthesis tasks. Moreover, two subjective radiologist evaluation studies were performed to verify the clinical usefulness of the generated images. MAN-GAN outperformed the baseline network and other state-of-the-art methods in all generations of the three phases. These results were verified in internal and external datasets. According to radiological evaluation, the image quality of generated three phase images are all above average. Moreover, the similarities between real images and generated images in all three phases are satisfactory. MAN-GAN demonstrates the feasibility of liver MPECT image translation based on non-contrast images and achieves state-of-the-art performance via the subtraction strategy. It has great potential for solving the dilemma of liver CT contrast canning and aiding further liver interaction clinical scenarios.

A Benchmark Framework for the Right Atrium Cavity Segmentation From LGE-MRIs.

Bai J, Zhu J, Chen Z, Yang Z, Lu Y, Li L, Li Q, Wang W, Zhang H, Wang K, Gan J, Zhao J, Lu H, Li S, Huang J, Chen X, Zhang X, Xu X, Li L, Tian Y, Campello VM, Lekadir K

pubmed logopapersJul 22 2025
The right atrium (RA) is critical for cardiac hemodynamics but is often overlooked in clinical diagnostics. This study presents a benchmark framework for RA cavity segmentation from late gadolinium-enhanced magnetic resonance imaging (LGE-MRIs), leveraging a two-stage strategy and a novel 3D deep learning network, RASnet. The architecture addresses challenges in class imbalance and anatomical variability by incorporating multi-path input, multi-scale feature fusion modules, Vision Transformers, context interaction mechanisms, and deep supervision. Evaluated on datasets comprising 354 LGE-MRIs, RASnet achieves SOTA performance with a Dice score of 92.19% on a primary dataset and demonstrates robust generalizability on an independent dataset. The proposed framework establishes a benchmark for RA cavity segmentation, enabling accurate and efficient analysis for cardiac imaging applications. Open-source code (https://github.com/zjinw/RAS) and data (https://zenodo.org/records/15524472) are provided to facilitate further research and clinical adoption.

Prediction of OncotypeDX recurrence score using H&E stained WSI images

Cohen, S., Shamai, G., Sabo, E., Cretu, A., Barshack, I., Goldman, T., Bar-Sela, G., Pearson, A. T., Huo, D., Howard, F. M., Kimmel, R., Mayer, C.

medrxiv logopreprintJul 21 2025
The OncotypeDX 21-gene assay is a widely adopted tool for estimating recurrence risk and informing chemotherapy decisions in early-stage, hormone receptor-positive, HER2-negative breast cancer. Although informative, its high cost and long turnaround time limit accessibility and delay treatment in low- and middle-income countries, creating a need for alternative solutions. This study presents a deep learning-based approach for predicting OncotypeDX recurrence scores directly from hematoxylin and eosin-stained whole slide images. Our approach leverages a deep learning foundation model pre-trained on 171,189 slides via self-supervised learning, which is fine-tuned for our task. The model was developed and validated using five independent cohorts, out of which three are external. On the two external cohorts that include OncotypeDX scores, the model achieved an AUC of 0.825 and 0.817, and identified 21.9% and 25.1% of the patients as low-risk with sensitivity of 0.97 and 0.95 and negative predictive value of 0.97 and 0.96, showing strong generalizability despite variations in staining protocols and imaging devices. Kaplan-Meier analysis demonstrated that patients classified as low-risk by the model had a significantly better prognosis than those classified as high-risk, with a hazard ratio of 4.1 (P<0.001) and 2.0 (P<0.01) on the two external cohorts that include patient outcomes. This artificial intelligence-driven solution offers a rapid, cost-effective, and scalable alternative to genomic testing, with the potential to enhance personalized treatment planning, especially in resource-constrained settings.

Imaging-aided diagnosis and treatment based on artificial intelligence for pulmonary nodules: A review.

Gao H, Li J, Wu Y, Tang Z, He X, Zhao F, Chen Y, He X

pubmed logopapersJul 21 2025
Pulmonary nodules are critical indicators for the early detection of lung cancer; however, their diagnosis and management pose significant challenges due to the variability in nodule characteristics, reader fatigue, and limited clinical expertise, often leading to diagnostic errors. The rapid advancement of artificial intelligence (AI) presents promising solutions to address these issues. This review compares traditional rule-based methods, handcrafted feature-based machine learning, radiomics, deep learning, and hybrid models incorporating Transformers or attention mechanisms. It systematically compares their methodologies, clinical applications (diagnosis, treatment, prognosis), and dataset usage to evaluate performance, applicability, and limitations in pulmonary nodule management. AI advances have significantly improved pulmonary nodule management, with transformer-based models achieving leading accuracy in segmentation, classification, and subtyping. The fusion of multimodal imaging CT, PET, and MRI further enhances diagnostic precision. Additionally, AI aids treatment planning and prognosis prediction by integrating radiomics with clinical data. Despite these advances, challenges remain, including domain shift, high computational demands, limited interpretability, and variability across multi-center datasets. Artificial intelligence (AI) has transformative potential in improving the diagnosis and treatment of lung nodules, especially in improving the accuracy of lung cancer treatment and patient prognosis, where significant progress has been made.

Artificial intelligence-generated apparent diffusion coefficient (AI-ADC) maps for prostate gland assessment: a multi-reader study.

Ozyoruk KB, Harmon SA, Yilmaz EC, Huang EP, Gelikman DG, Gaur S, Giganti F, Law YM, Margolis DJ, Jadda PK, Raavi S, Gurram S, Wood BJ, Pinto PA, Choyke PL, Turkbey B

pubmed logopapersJul 21 2025
To compare the quality of AI-ADC maps and standard ADC maps in a multi-reader study. Multi-reader study included 74 consecutive patients (median age = 66 years, [IQR = 57.25-71.75 years]; median PSA = 4.30 ng/mL [IQR = 1.33-7.75 ng/mL]) with suspected or confirmed PCa, who underwent mpMRI between October 2023 and January 2024. The study was conducted in two rounds, separated by a 4-week wash-out period. In each round, four readers evaluated T2W-MRI and standard or AI-generated ADC (AI-ADC) maps. Fleiss' kappa, quadratic-weighted Cohen's kappa statistics were used to assess inter-reader agreement. Linear mixed effect models were employed to compare the quality evaluation of standard versus AI-ADC maps. AI-ADC maps exhibited significantly enhanced imaging quality compared to standard ADC maps with higher ratings in windowing ease (β = 0.67 [95% CI 0.30-1.04], p < 0.05), prostate boundary delineation (β = 1.38 [95% CI 1.03-1.73], p < 0.001), reductions in distortion (β = 1.68 [95% CI 1.30-2.05], p < 0.001), noise (β = 0.56 [95% CI 0.24-0.88], p < 0.001). AI-ADC maps reduced reacquisition requirements for all readers (β = 2.23 [95% CI 1.69-2.76], p < 0.001), supporting potential workflow efficiency gains. No differences were observed between AI-ADC and standard ADC maps' inter-reader agreement. Our multi-reader study demonstrated that AI-ADC maps improved prostate boundary delineation, had lower image noise, fewer distortions, and higher overall image quality compared to ADC maps. Question Can we synthesize apparent diffusion coefficient (ADC) maps with AI to achieve higher quality maps? Findings On average, readers rated quality factors of AI-ADC maps higher than ADC maps in 34.80% of cases, compared to 5.07% for ADC (p < 0.01). Clinical relevance AI-ADC maps may serve as a reliable diagnostic support tool thanks to their high quality, particularly when the acquired ADC maps include artifacts.

AI-based body composition analysis of CT data has the potential to predict disease course in patients with multiple myeloma.

Wegner F, Sieren MM, Grasshoff H, Berkel L, Rowold C, Röttgerding MP, Khalil S, Mogadas S, Nensa F, Hosch R, Riemekasten G, Hamm AF, von Bubnoff N, Barkhausen J, Kloeckner R, Khandanpour C, Leitner T

pubmed logopapersJul 21 2025
The aim of this study was to evaluate the benefit of a volumetric AI-based body composition analysis (BCA) algorithm in multiple myeloma (MM). Therefore, a retrospective monocentric cohort of 91 MM patients was analyzed. The BCA algorithm, powered by a convolutional neural network, quantified tissue compartments and bone density based on routine CT scans. Correlations between BCA data and demographic/clinical parameters were investigated. BCA-endotypes were identified and survival rates were compared between BCA-derived patient clusters. Patients with high-risk cytogenetics exhibited elevated cardiac marker index values. Across Revised-International Staging System (R-ISS) categories, BCA parameters did not show significant differences. However, both subcutaneous and total adipose tissue volumes were significantly lower in patients with progressive disease or death during follow-up compared to patients without progression. Cluster analysis revealed two distinct BCA-endotypes, with one group displaying significantly better survival. Furthermore, a combined model composed of clinical parameters and BCA data demonstrated a higher predictive capability for disease progression compared to models based solely on high-risk cytogenetics or R-ISS. These findings underscore the potential of BCA to improve patient stratification and refining prognostic models in MM.

Advances in IPMN imaging: deep learning-enhanced HASTE improves lesion assessment.

Kolck J, Pivetta F, Hosse C, Cao H, Fehrenbach U, Malinka T, Wagner M, Walter-Rittel T, Geisel D

pubmed logopapersJul 21 2025
The prevalence of asymptomatic pancreatic cysts is increasing due to advances in imaging techniques. Among these, intraductal papillary mucinous neoplasms (IPMNs) are most common, with potential for malignant transformation, often necessitating close follow-up. This study evaluates novel MRI techniques for the assessment of IPMN. From May to December 2023, 59 patients undergoing abdominal MRI were retrospectively enrolled. Examinations were conducted on 3-Tesla scanners using a Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) and standard HASTE (HASTE<sub>S</sub>) sequence. Two readers assessed minimum detectable lesion size and lesion-to-parenchyma contrast quantitatively, and qualitative assessments focused on image quality. Statistical analyses included the Wilcoxon signed-rank and chi-squared tests. HASTE<sub>DL</sub> demonstrated superior overall image quality (p < 0.001), with higher sharpness and contrast ratings (p < 0.001, p = 0.112). HASTE<sub>DL</sub> showed enhanced conspicuity of IPMN (p < 0.001) and lymph nodes (p < 0.001), with more frequent visualization of IPMN communication with the pancreatic duct (p < 0.001). Visualization of complex features (dilated pancreatic duct, septa, and mural nodules) was superior in HASTE<sub>DL</sub> (p < 0.001). The minimum detectable cyst size was significantly smaller for HASTE<sub>DL</sub> (4.17 mm ± 3.00 vs. 5.51 mm ± 4.75; p < 0.001). Inter-reader agreement was for (к 0.936) for HASTE<sub>DL</sub>, slightly lower (к 0.885) for HASTE<sub>S</sub>. HASTE<sub>DL</sub> in IPMN imaging provides superior image quality and significantly reduced scan times. Given the increasing prevalence of IPMN and the ensuing clinical need for fast and precise imaging, HASTE<sub>DL</sub> improves the availability and quality of patient care. Question Are there advantages of deep-learning-accelerated MRI in imaging and assessing intraductal papillary mucinous neoplasms (IPMN)? Findings Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) demonstrated superior image quality, improved conspicuity of "worrisome features" and detection of smaller cysts, with significantly reduced scan times. Clinical relevance HASTEDL provides faster, high-quality MRI imaging, enabling improved diagnostic accuracy and timely risk stratification for IPMN, potentially enhancing patient care and addressing the growing clinical demand for efficient imaging of IPMN.
Page 23 of 91907 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.