Sort by:
Page 23 of 42415 results

Finding Optimal Kernel Size and Dimension in Convolutional Neural Networks An Architecture Optimization Approach

Shreyas Rajeev, B Sathish Babu

arxiv logopreprintJun 16 2025
Kernel size selection in Convolutional Neural Networks (CNNs) is a critical but often overlooked design decision that affects receptive field, feature extraction, computational cost, and model accuracy. This paper proposes the Best Kernel Size Estimation Function (BKSEF), a mathematically grounded and empirically validated framework for optimal, layer-wise kernel size determination. BKSEF balances information gain, computational efficiency, and accuracy improvements by integrating principles from information theory, signal processing, and learning theory. Extensive experiments on CIFAR-10, CIFAR-100, ImageNet-lite, ChestX-ray14, and GTSRB datasets demonstrate that BKSEF-guided architectures achieve up to 3.1 percent accuracy improvement and 42.8 percent reduction in FLOPs compared to traditional models using uniform 3x3 kernels. Two real-world case studies further validate the approach: one for medical image classification in a cloud-based setup, and another for traffic sign recognition on edge devices. The former achieved enhanced interpretability and accuracy, while the latter reduced latency and model size significantly, with minimal accuracy trade-off. These results show that kernel size can be an active, optimizable parameter rather than a fixed heuristic. BKSEF provides practical heuristics and theoretical support for researchers and developers seeking efficient and application-aware CNN designs. It is suitable for integration into neural architecture search pipelines and real-time systems, offering a new perspective on CNN optimization.

Predicting overall survival of NSCLC patients with clinical, radiomics and deep learning features

Kanakarajan, H., Zhou, J., Baene, W. D., Sitskoorn, M.

medrxiv logopreprintJun 16 2025
Background and purposeAccurate estimation of Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) patients provides critical insights for treatment planning. While previous studies showed that radiomics and Deep Learning (DL) features increased prediction accuracy, this study aimed to examine whether a model that combines the radiomics and DL features with the clinical and dosimetric features outperformed other models. Materials and methodsWe collected pre-treatment lung CT scans and clinical data for 225 NSCLC patients from the Maastro Clinic: 180 for training and 45 for testing. Radiomics features were extracted using the Python radiomics feature extractor, and DL features were obtained using a 3D ResNet model. An ensemble model comprising XGB and NN classifiers was developed using: (1) clinical features only; (2) clinical and radiomics features; (3) clinical and DL features; and (4) clinical, radiomics, and DL features. The performance metrics were evaluated for the test and K-fold cross-validation data sets. ResultsThe prediction model utilizing only clinical variables provided an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.64 and a test accuracy of 77.55%. The best performance came from combining clinical, radiomics, and DL features (AUC: 0.84, accuracy: 85.71%). The prediction improvement of this model was statistically significant compared to models trained with clinical features alone or with a combination of clinical and radiomics features. ConclusionIntegrating radiomics and DL features with clinical characteristics improved the prediction of OS after radiotherapy for NSCLC patients. The increased accuracy of our integrated model enables personalized, risk-based treatment planning, guiding clinicians toward more effective interventions, improved patient outcomes and enhanced quality of life.

Precision Medicine and Machine Learning to predict critical disease and death due to Coronavirus disease 2019 (COVID-19).

Júnior WLDT, Danelli T, Tano ZN, Cassela PLCS, Trigo GL, Cardoso KM, Loni LP, Ahrens TM, Espinosa BR, Fernandes AJ, Almeida ERD, Lozovoy MAB, Reiche EMV, Maes M, Simão ANC

pubmed logopapersJun 16 2025
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19) and induces activation of inflammatory pathways, including the inflammasome. The aim was to construct Machine Learning (ML) models to predict critical disease and death in patients with COVID-19. A total of 528 individuals with SARS-CoV-2 infection were included, comprising 308 with critical and 220 with non-critical COVID-19. The ML models included imaging, demographic, inflammatory biomarkers, NLRP3 (rs10754558 and rs10157379) and IL18 (rs360717 and rs187238) inflammasome variants. Individuals with critical COVID-19 were older, higher male/female ratio, body mass index (BMI), rate of type 2 diabetes mellitus (T2DM), hypertension, inflammatory biomarkers, need of orotracheal intubation, intensive care unit admission, incidence of death, and sickness symptom complex (SSC) scores and lower peripheral oxygen saturation (SpO<sub>2</sub>) compared to those with non-critical disease. We found that 49.5 % of the variance in the severity of critical COVID-19 was explained by SpO<sub>2</sub> and SSC (negatively associated), chest computed tomography alterations (CCTA), inflammatory biomarkers, severe acute respiratory syndrome (SARS), BMI, T2DM, and age (positively associated). In this model, the NLRP3/IL18 variants showed indirect effects on critical COVID-19 that were mediated by inflammatory biomarkers, SARS, and SSC. Neural network models yielded a prediction of critical disease and death due to COVID-19 with an area under the receiving operating characteristic curve of 0.930 and 0.927, respectively. These ML methods increase the accuracy of predicting severity, critical illness, and mortality caused by COVID-19 and show that the genetic variants contribute to the predictive power of the ML models.

Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence

Maximilian Ferle, Jonas Ader, Thomas Wiemers, Nora Grieb, Adrian Lindenmeyer, Hans-Jonas Meyer, Thomas Neumuth, Markus Kreuz, Kristin Reiche, Maximilian Merz

arxiv logopreprintJun 15 2025
Risk stratification is a key tool in clinical decision-making, yet current approaches often fail to translate sophisticated survival analysis into actionable clinical criteria. We present a novel method for unsupervised machine learning that directly optimizes for survival heterogeneity across patient clusters through a differentiable adaptation of the multivariate logrank statistic. Unlike most existing methods that rely on proxy metrics, our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups. We thoroughly evaluate the method in simulation experiments and demonstrate its utility in practice by applying it to two distinct cancer types: analyzing laboratory parameters from multiple myeloma patients and computed tomography images from non-small cell lung cancer patients, identifying prognostically distinct patient subgroups with significantly different survival outcomes in both cases. Post-hoc explainability analyses uncover clinically meaningful features determining the group assignments which align well with established risk factors and thus lend strong weight to the methods utility. This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification, enabling the discovery of novel prognostic signatures across diverse data types while providing interpretable results that promise to complement treatment personalization and clinical decision-making in oncology and beyond.

A review: Lightweight architecture model in deep learning approach for lung disease identification.

Maharani DA, Utaminingrum F, Husnina DNN, Sukmaningrum B, Rahmania FN, Handani F, Chasanah HN, Arrahman A, Febrianto F

pubmed logopapersJun 14 2025
As one of the leading causes of death worldwide, early detection of lung disease is a very important step to improve the effectiveness of treatment. By using medical image data, such as X-ray or CT-scan, classification of lung disease can be done. Deep learning methods have been widely used to recognize complex patterns in medical images, but this approach has the constraints of requiring large data variations and high computing resources. In overcoming these constraints, the lightweight architecture in deep learning can provide a more efficient solution based on the number of parameters and computing time. This method can be applied to devices with low processor specifications on portable devices such as mobile phones. This article presents a comprehensive review of 23 research studies published between 2020 and 2025, focusing on various lightweight architectures and optimization techniques aimed at improving the accuracy of lung disease detection. The results show that these models are able to significantly reduce parameter sizes, resulting in faster computation times while maintaining competitive accuracy compared to traditional deep learning architectures. From the research that has been done, it can be seen that SqueezeNet applied on public COVID-19 datasets is the best basic architecture with high accuracy, and the number of parameters is 570 thousand, which is very low. On the other hand, UNet requires 31.07 million parameters, and SegNet requires 29.45 million parameters trained on CT scan images from Italian Society of Medical and Interventional Radiology and Radiopedia, so it is less efficient. For the combination method, EfficientNetV2 and Extreme Learning Machine (ELM) are able to achieve the highest accuracy of 98.20 % and can significantly reduce parameters. The worst performance is shown by VGG and UNet with a decrease in accuracy from 91.05 % to 87 % and an increase in the number of parameters. It can be concluded that the lightweight architecture can be applied to medical image classification in the diagnosis of lung disease quickly and efficiently on devices with limited specifications.

AI-Based screening for thoracic aortic aneurysms in routine breast MRI.

Bounias D, Führes T, Brock L, Graber J, Kapsner LA, Liebert A, Schreiter H, Eberle J, Hadler D, Skwierawska D, Floca R, Neher P, Kovacs B, Wenkel E, Ohlmeyer S, Uder M, Maier-Hein K, Bickelhaupt S

pubmed logopapersJun 12 2025
Prognosis for thoracic aortic aneurysms is significantly worse for women than men, with a higher mortality rate observed among female patients. The increasing use of magnetic resonance breast imaging (MRI) offers a unique opportunity for simultaneous detection of both breast cancer and thoracic aortic aneurysms. We retrospectively validate a fully-automated artificial neural network (ANN) pipeline on 5057 breast MRI examinations from public (Duke University Hospital/EA1141 trial) and in-house (Erlangen University Hospital) data. The ANN, benchmarked against 3D-ground-truth segmentations, clinical reports, and a multireader panel, demonstrates high technical robustness (dice/clDice 0.88-0.91/0.97-0.99) across different vendors and field strengths. The ANN improves aneurysm detection rates by 3.5-fold compared with routine clinical readings, highlighting its potential to improve early diagnosis and patient outcomes. Notably, a higher odds ratio (OR = 2.29, CI: [0.55,9.61]) for thoracic aortic aneurysms is observed in women with breast cancer or breast cancer history, suggesting potential further benefits from integrated simultaneous assessment for cancer and aortic aneurysms.

CT-based deep learning model for improved disease-free survival prediction in clinical stage I lung cancer: a real-world multicenter study.

Fu Y, Hou R, Qian L, Feng W, Zhang Q, Yu W, Cai X, Liu J, Wang Y, Ding Z, Xu Y, Zhao J, Fu X

pubmed logopapersJun 12 2025
To develop a deep learning (DL) model for predicting disease-free survival (DFS) in clinical stage I lung cancer patients who underwent surgical resection using pre-treatment CT images, and further validate it in patients receiving stereotactic body radiation therapy (SBRT). A retrospective cohort of 2489 clinical stage I non-small cell lung cancer (NSCLC) patients treated with operation (2015-2017) was enrolled to develop a DL-based DFS prediction model. Tumor features were extracted from CT images using a three-dimensional convolutional neural network. External validation was performed on 248 clinical stage I patients receiving SBRT from two hospitals. A clinical model was constructed by multivariable Cox regression for comparison. Model performance was evaluated with Harrell's concordance index (C-index), which measures the model's ability to correctly rank survival times by comparing all possible pairs of subjects. In the surgical cohort, the DL model effectively predicted DFS with a C-index of 0.85 (95% CI: 0.80-0.89) in the internal testing set, significantly outperforming the clinical model (C-index: 0.76). Based on the DL model, 68 patients in the SBRT cohort identified as high-risk had significantly worse DFS compared to the low-risk group (p < 0.01, 5-year DFS rate: 34.7% vs 77.4%). The DL-score was demonstrated to be an independent predictor of DFS in both cohorts (p < 0.01). The CT-based DL model improved DFS prediction in clinical stage I lung cancer patients, identifying populations at high risk of recurrence and metastasis to guide clinical decision-making. Question The recurrence or metastasis rate of early-stage lung cancer remains high and varies among patients following radical treatments such as surgery or SBRT. Findings This CT-based DL model successfully predicted DFS and stratified varying disease risks in clinical stage I lung cancer patients undergoing surgery or SBRT. Clinical relevance The CT-based DL model is a reliable predictive tool for the prognosis of early-stage lung cancer. Its accurate risk stratification assists clinicians in identifying specific patients for personalized clinical decision making.

A strategy for the automatic diagnostic pipeline towards feature-based models: a primer with pleural invasion prediction from preoperative PET/CT images.

Kong X, Zhang A, Zhou X, Zhao M, Liu J, Zhang X, Zhang W, Meng X, Li N, Yang Z

pubmed logopapersJun 12 2025
This study aims to explore the feasibility to automate the application process of nomograms in clinical medicine, demonstrated through the task of preoperative pleural invasion prediction in non-small cell lung cancer patients using PET/CT imaging. The automatic pipeline involves multimodal segmentation, feature extraction, and model prediction. It is validated on a cohort of 1116 patients from two medical centers. The performance of the feature-based diagnostic model outperformed both the radiomics model and individual machine learning models. The segmentation models for CT and PET images achieved mean dice similarity coefficients of 0.85 and 0.89, respectively, and the segmented lung contours showed high consistency with the actual contours. The automatic diagnostic system achieved an accuracy of 0.87 in the internal test set and 0.82 in the external test set, demonstrating comparable overall diagnostic performance to the human-based diagnostic model. In comparative analysis, the automatic diagnostic system showed superior performance relative to other segmentation and diagnostic pipelines. The proposed automatic diagnostic system provides an interpretable, automated solution for predicting pleural invasion in non-small cell lung cancer.

Tackling Tumor Heterogeneity Issue: Transformer-Based Multiple Instance Enhancement Learning for Predicting EGFR Mutation via CT Images.

Fang Y, Wang M, Song Q, Cao C, Gao Z, Song B, Min X, Li A

pubmed logopapersJun 12 2025
Accurate and non-invasive prediction of epidermal growth factor receptor (EGFR) mutation is crucial for the diagnosis and treatment of non-small cell lung cancer (NSCLC). While computed tomography (CT) imaging shows promise in identifying EGFR mutation, current prediction methods heavily rely on fully supervised learning, which overlooks the substantial heterogeneity of tumors and therefore leads to suboptimal results. To tackle tumor heterogeneity issue, this study introduces a novel weakly supervised method named TransMIEL, which leverages multiple instance learning techniques for accurate EGFR mutation prediction. Specifically, we first propose an innovative instance enhancement learning (IEL) strategy that strengthens the discriminative power of instance features for complex tumor CT images by exploring self-derived soft pseudo-labels. Next, to improve tumor representation capability, we design a spatial-aware transformer (SAT) that fully captures inter-instance relationships of different pathological subregions to mirror the diagnostic processes of radiologists. Finally, an instance adaptive gating (IAG) module is developed to effectively emphasize the contribution of informative instance features in heterogeneous tumors, facilitating dynamic instance feature aggregation and increasing model generalization performance. Experimental results demonstrate that TransMIEL significantly outperforms existing fully and weakly supervised methods on both public and in-house NSCLC datasets. Additionally, visualization results show that our approach can highlight intra-tumor and peri-tumor areas relevant to EGFR mutation status. Therefore, our method holds significant potential as an effective tool for EGFR prediction and offers a novel perspective for future research on tumor heterogeneity.

Anatomy-Grounded Weakly Supervised Prompt Tuning for Chest X-ray Latent Diffusion Models

Konstantinos Vilouras, Ilias Stogiannidis, Junyu Yan, Alison Q. O'Neil, Sotirios A. Tsaftaris

arxiv logopreprintJun 12 2025
Latent Diffusion Models have shown remarkable results in text-guided image synthesis in recent years. In the domain of natural (RGB) images, recent works have shown that such models can be adapted to various vision-language downstream tasks with little to no supervision involved. On the contrary, text-to-image Latent Diffusion Models remain relatively underexplored in the field of medical imaging, primarily due to limited data availability (e.g., due to privacy concerns). In this work, focusing on the chest X-ray modality, we first demonstrate that a standard text-conditioned Latent Diffusion Model has not learned to align clinically relevant information in free-text radiology reports with the corresponding areas of the given scan. Then, to alleviate this issue, we propose a fine-tuning framework to improve multi-modal alignment in a pre-trained model such that it can be efficiently repurposed for downstream tasks such as phrase grounding. Our method sets a new state-of-the-art on a standard benchmark dataset (MS-CXR), while also exhibiting robust performance on out-of-distribution data (VinDr-CXR). Our code will be made publicly available.
Page 23 of 42415 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.