Application of prediction model based on CT radiomics in prognosis of patients with non-small cell lung cancer.
Authors
Affiliations (5)
Affiliations (5)
- Department of Medical Imaging Center, Northeast Yunnan Central Hospital, Zhaotong, 657000, China.
- Department of Medical Imaging Center, Kunming First People's Hospital, Kunming, 650051, China.
- Department of Medical Imaging Center, Yunnan Cancer Hospital, Kunming, 650051, China. [email protected].
- Department of Medical Imaging Center, Kunming First People's Hospital, Kunming, 650051, China. [email protected].
- Kunming Medical University, Kunming, 650500, China. [email protected].
Abstract
To establish and validate the utility of computed tomography (CT) radiomics for the prognosis of patients with non-small cell lung cancer (NSCLC). Overall, 215 patients with pathologic diagnosis of NSCLC were included, chest CT images and clinical data were collected before treatment, and follow-up was conducted to assess brain metastasis and survival. Radiomics characteristics were extracted from the chest CT lung window images of each patient, key characteristics were screened, the radiomics score (Radscore) was calculated, and radiomics, clinical, and combined models were constructed using clinically independent predictive factors. A nomogram was constructed based on the final joint model to visualize prediction results. Predictive efficacy was evaluated using the concordance index (C-index), and survival (Kaplan-Meier) and calibration curves were drawn to further evaluate predictive efficacy. The training set included 151 patients (43 with brain metastasis and 108 without brain metastasis) and 64 patients (18 with brain metastasis and 46 without). Multivariate analysis revealed that lymph node metastasis, lymphocyte percentage, and neuron-specific enolase (NSE) were independent predictors of brain metastasis in patients with NSCLC. The area under the curve (AUC) of the these models were 0.733, 0.836, and 0.849, respectively, in the training set and were 0.739, 0.779, and 0.816, respectively, in the validation set. Multivariate Cox regression analysis revealed that the number of brain metastases, distant metastases elsewhere, and C-reactive protein levels were independent predictors of postoperative survival in patients with brain metastases (<i>P</i> < 0.05). The calibration curve exhibited that the predicted values of the prognostic prediction model agreed well with the actual values. The model based on CT radiomics characteristics can effectively predict NSCLC brain metastasis and its prognosis and provide guidance for individualized treatment of NSCLC patients.