Sort by:
Page 2 of 45442 results

Association Between Automated Coronary Artery Calcium From Routine Chest Computed Tomography Scans and Cardiovascular Risk in Patients With Colorectal or Gastric Cancer.

Kim S, Kim S, Cha MJ, Kim HS, Kim HS, Hyung WJ, Cho I, You SC

pubmed logopapersJun 16 2025
As cardiovascular disease (CVD) is the leading cause of noncancer mortality in colorectal or gastric cancer patients, it is essential to identify patients at increased CVD risk. Coronary artery calcium (CAC) is an established predictor of atherosclerotic CVD; however, its application is limited in this population. This study evaluates the association between automated CAC scoring using chest computed tomography and atherosclerotic CVD risk in colorectal or gastric cancer patients. A retrospective cohort study was conducted using electronic health records linked to claims data of colorectal or gastric cancer patients who underwent non-ECG-gated chest computed tomography at 2 tertiary hospitals in South Korea between 2011 and 2019. CAC was automatically quantified using deep learning software and used to classify patients into 4 groups (CAC=0, 0<CAC≤100, 100<CAC≤400, CAC>400). The primary outcome was major adverse cardiovascular events (myocardial infarction, stroke, or cardiovascular mortality), and assessed using the multivariable Fine and Gray subdistribution hazard model. A meta-analysis was performed to calculate pooled subdistribution hazard ratios. A total of 3153 patients were included in this study (36.5% female; 36.3% CAC=0; 38.1% 0<CAC≤100; 14.1% 100<CAC≤400; 11.5% CAC>400). The mean follow-up period was 4.1 years. The incidence rate of MACE was 5.28, 8.03, 9.99, and 29.14 per 1000 person-years in CAC=0, 0<CAC≤100, 100<CAC≤400, and CAC>400. Compared with CAC=0, the risk of MACE was not significantly different in patients with 0<CAC≤100 (subdistribution hazard ratio, 1.43 [95% CI, 0.41-5.01]), and 100<CAC≤400 (subdistribution hazard ratio, 0.99 [95% CI, 0.48-2.04]). Patients with CAC>400 had 2.33 (95% CI, 1.24-4.39) times higher risk of MACE compared with those with CAC=0. CAC>400 was associated with an increased risk of MACE compared with CAC=0 among colorectal or gastric cancer patients. CAC quantified on routine chest computed tomography scans provides prognostic information for atherosclerotic CVD risk in this population.

Two-stage convolutional neural network for segmentation and detection of carotid web on CT angiography.

Kuang H, Tan X, Bala F, Huang J, Zhang J, Alhabli I, Benali F, Singh N, Ganesh A, Coutts SB, Almekhlafi MA, Goyal M, Hill MD, Qiu W, Menon BK

pubmed logopapersJun 16 2025
Carotid web (CaW) is a risk factor for ischemic stroke, mainly in young patients with stroke of undetermined etiology. Its detection is challenging, especially among non-experienced physicians. We included patients with CaW from six international trials and registries of patients with acute ischemic stroke. Identification and manual segmentations of CaW were performed by three trained radiologists. We designed a two-stage segmentation strategy based on a convolutional neural network (CNN). At the first stage, the two carotid arteries were segmented using a U-shaped CNN. At the second stage, the segmentation of the CaW was first confined to the vicinity of the carotid arteries. Then, the carotid bifurcation region was localized by the proposed carotid bifurcation localization algorithm followed by another U-shaped CNN. A volume threshold based on the derived CaW manual segmentation statistics was then used to determine whether or not CaW was present. We included 58 patients (median (IQR) age 59 (50-75) years, 60% women). The Dice similarity coefficient and 95th percentile Hausdorff distance between manually segmented CaW and the algorithm segmented CaW were 63.20±19.03% and 1.19±0.9 mm, respectively. Using a volume threshold of 5 mm<sup>3</sup>, binary classification detection metrics for CaW on a single artery were as follows: accuracy: 92.2% (95% CI 87.93% to 96.55%), precision: 94.83% (95% CI 88.68% to 100.00%), sensitivity: 90.16% (95% CI 82.16% to 96.97%), specificity: 94.55% (95% CI 88.0% to 100.0%), F1 measure: 0.9244 (95% CI 0.8679 to 0.9692), area under the curve: 0.9235 (95%CI 0.8726 to 0.9688). The proposed two-stage method enables reliable segmentation and detection of CaW from head and neck CT angiography.

PRO: Projection Domain Synthesis for CT Imaging

Kang Chen, Bin Huang, Xuebin Yang, Junyan Zhang, Qiegen Liu

arxiv logopreprintJun 16 2025
Synthesizing high quality CT images remains a signifi-cant challenge due to the limited availability of annotat-ed data and the complex nature of CT imaging. In this work, we present PRO, a novel framework that, to the best of our knowledge, is the first to perform CT image synthesis in the projection domain using latent diffusion models. Unlike previous approaches that operate in the image domain, PRO learns rich structural representa-tions from raw projection data and leverages anatomi-cal text prompts for controllable synthesis. This projec-tion domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capa-ble of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves perfor-mance across multiple downstream tasks, including low-dose and sparse-view reconstruction, even with limited training data. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.

A computed tomography angiography-based radiomics model for prognostic prediction of endovascular abdominal aortic repair.

Huang S, Liu D, Deng K, Shu C, Wu Y, Zhou Z

pubmed logopapersJun 15 2025
This study aims to develop a radiomics machine learning (ML) model that uses preoperative computed tomography angiography (CTA) data to predict the prognosis of endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA) patients. In this retrospective study, 164 AAA patients underwent EVAR and were categorized into shrinkage (good prognosis) or stable (poor prognosis) groups based on post-EVAR sac regression. From preoperative AAA and perivascular adipose tissue (PVAT) image, radiomics features (RFs) were extracted for model creation. Patients were split into 80 % training and 20 % test sets. A support vector machine model was constructed for prediction. Accuracy is evaluated via the area under the receiver operating characteristic curve (AUC). Demographics and comorbidities showed no significant differences between shrinkage and stable groups. The model containing 5 AAA RFs (which are original_firstorder_InterquartileRange, log-sigma-3-0-mm-3D_glrlm_GrayLevelNonUniformityNormalized, log-sigma-3-0-mm-3D_glrlm_RunPercentage, log-sigma-4-0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis, wavelet-LLH_glcm_SumEntropy) had AUCs of 0.86 (training) and 0.77 (test). The model containing 7 PVAT RFs (which are log-sigma-3-0-mm-3D_firstorder_InterquartileRange, log-sigma-3-0-mm-3D_glcm_Correlation, wavelet-LHL_firstorder_Energy, wavelet-LHL_firstorder_TotalEnergy, wavelet-LHH_firstorder_Mean, wavelet-LHH_glcm_Idmn, wavelet-LHH_glszm_GrayLevelNonUniformityNormalized) had AUCs of 0.76 (training) and 0.78 (test). Combining AAA and PVAT RFs yielded the highest accuracy: AUCs of 0.93 (training) and 0.87 (test). Radiomics-based CTA model predicts aneurysm sac regression post-EVAR in AAA patients. PVAT RFs from preoperative CTA images were closely related to AAA prognosis after EVAR, enhancing accuracy when combined with AAA RFs. This preliminary study explores a predictive model designed to assist clinicians in optimizing therapeutic strategies during clinical decision-making processes.

Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence

Maximilian Ferle, Jonas Ader, Thomas Wiemers, Nora Grieb, Adrian Lindenmeyer, Hans-Jonas Meyer, Thomas Neumuth, Markus Kreuz, Kristin Reiche, Maximilian Merz

arxiv logopreprintJun 15 2025
Risk stratification is a key tool in clinical decision-making, yet current approaches often fail to translate sophisticated survival analysis into actionable clinical criteria. We present a novel method for unsupervised machine learning that directly optimizes for survival heterogeneity across patient clusters through a differentiable adaptation of the multivariate logrank statistic. Unlike most existing methods that rely on proxy metrics, our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups. We thoroughly evaluate the method in simulation experiments and demonstrate its utility in practice by applying it to two distinct cancer types: analyzing laboratory parameters from multiple myeloma patients and computed tomography images from non-small cell lung cancer patients, identifying prognostically distinct patient subgroups with significantly different survival outcomes in both cases. Post-hoc explainability analyses uncover clinically meaningful features determining the group assignments which align well with established risk factors and thus lend strong weight to the methods utility. This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification, enabling the discovery of novel prognostic signatures across diverse data types while providing interpretable results that promise to complement treatment personalization and clinical decision-making in oncology and beyond.

Multi-class transformer-based segmentation of pancreatic ductal adenocarcinoma and surrounding structures in CT imaging: a multi-center evaluation.

Wen S, Xiao X

pubmed logopapersJun 14 2025
Accurate segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding anatomical structures is critical for diagnosis, treatment planning, and outcome assessment. This study proposes a deep learning-based framework to automate multi-class segmentation in CT images, comparing the performance of four state-of-the-art architectures. This retrospective multi-center study included 3265 patients from six institutions. Four deep learning models-UNet, nnU-Net, UNETR, and Swin-UNet-were trained using five-fold cross-validation on data from five centers and tested independently on a sixth center (n = 569). Preprocessing included intensity normalization, voxel resampling, and standardized annotation for six structures: PDAC lesion, pancreas, veins, arteries, pancreatic duct, and common bile duct. Evaluation metrics included Dice Similarity Coefficient (DSC), Intersection over Union (IoU), directed Hausdorff Distance (dHD), Average Symmetric Surface Distance (ASSD), and Volume Overlap Error (VOE). Statistical comparisons were made using Wilcoxon signed-rank tests with Bonferroni correction. Swin-UNet outperformed all models with a mean validation DSC of 92.4% and test DSC of 90.8%, showing minimal overfitting. It also achieved the lowest dHD (4.3 mm), ASSD (1.2 mm), and VOE (6.0%) in cross-validation. Per-class DSCs for Swin-UNet were consistently higher across all anatomical targets, including challenging structures like the pancreatic duct (91.0%) and bile duct (91.8%). Statistical analysis confirmed the superiority of Swin-UNet (p < 0.001). All models showed generalization capability, but Swin-UNet provided the most accurate and robust segmentation across datasets. Transformer-based architectures, particularly Swin-UNet, enable precise and generalizable multi-class segmentation of PDAC and surrounding anatomy. This framework has potential for clinical integration in PDAC diagnosis, staging, and therapy planning.

Qualitative evaluation of automatic liver segmentation in computed tomography images for clinical use in radiation therapy.

Khalal DM, Slimani S, Bouraoui ZE, Azizi H

pubmed logopapersJun 14 2025
Segmentation of target volumes and organs at risk on computed tomography (CT) images constitutes an important step in the radiotherapy workflow. Artificial intelligence-based methods have significantly improved organ segmentation in medical images. Automatic segmentations are frequently evaluated using geometric metrics. Before a clinical implementation in the radiotherapy workflow, automatic segmentations must also be evaluated by clinicians. The aim of this study was to investigate the correlation between geometric metrics used for segmentation evaluation and the assessment performed by clinicians. In this study, we used the U-Net model to segment the liver in CT images from a publicly available dataset. The model's performance was evaluated using two geometric metrics: the Dice similarity coefficient and the Hausdorff distance. Additionally, a qualitative evaluation was performed by clinicians who reviewed the automatic segmentations to rate their clinical acceptability for use in the radiotherapy workflow. The correlation between the geometric metrics and the clinicians' evaluations was studied. The results showed that while the Dice coefficient and Hausdorff distance are reliable indicators of segmentation accuracy, they do not always align with clinician segmentation. In some cases, segmentations with high Dice scores still required clinician corrections before clinical use in the radiotherapy workflow. This study highlights the need for more comprehensive evaluation metrics beyond geometric measures to assess the clinical acceptability of artificial intelligence-based segmentation. Although the deep learning model provided promising segmentation results, the present study shows that standardized validation methodologies are crucial for ensuring the clinical viability of automatic segmentation systems.

A multimodal fusion system predicting survival benefits of immune checkpoint inhibitors in unresectable hepatocellular carcinoma.

Xu J, Wang T, Li J, Wang Y, Zhu Z, Fu X, Wang J, Zhang Z, Cai W, Song R, Hou C, Yang LZ, Wang H, Wong STC, Li H

pubmed logopapersJun 14 2025
Early identification of unresectable hepatocellular carcinoma (HCC) patients who may benefit from immune checkpoint inhibitors (ICIs) is crucial for optimizing outcomes. Here, we developed a multimodal fusion (MMF) system integrating CT-derived deep learning features and clinical data to predict overall survival (OS) and progression-free survival (PFS). Using retrospective multicenter data (n = 859), the MMF combining an ensemble deep learning (Ensemble-DL) model with clinical variables achieved strong external validation performance (C-index: OS = 0.74, PFS = 0.69), outperforming radiomics (29.8% OS improvement), mRECIST (27.6% OS improvement), clinical benchmarks (C-index: OS = 0.67, p = 0.0011; PFS = 0.65, p = 0.033), and Ensemble-DL (C-index: OS = 0.69, p = 0.0028; PFS = 0.66, p = 0.044). The MMF system effectively stratified patients across clinical subgroups and demonstrated interpretability through activation maps and radiomic correlations. Differential gene expression analysis revealed enrichment of the PI3K/Akt pathway in patients identified by the MMF system. The MMF system provides an interpretable, clinically applicable approach to guide personalized ICI treatment in unresectable HCC.

FDTooth: Intraoral Photographs and CBCT Images for Fenestration and Dehiscence Detection.

Liu K, Elbatel M, Chu G, Shan Z, Sum FHKMH, Hung KF, Zhang C, Li X, Yang Y

pubmed logopapersJun 14 2025
Fenestration and dehiscence (FD) pose significant challenges in dental treatments as they adversely affect oral health. Although cone-beam computed tomography (CBCT) provides precise diagnostics, its extensive time requirements and radiation exposure limit its routine use for monitoring. Currently, there is no public dataset that combines intraoral photographs and corresponding CBCT images; this limits the development of deep learning algorithms for the automated detection of FD and other potential diseases. In this paper, we present FDTooth, a dataset that includes both intraoral photographs and CBCT images of 241 patients aged between 9 and 55 years. FDTooth contains 1,800 precise bounding boxes annotated on intraoral photographs, with gold-standard ground truth extracted from CBCT. We developed a baseline model for automated FD detection in intraoral photographs. The developed dataset and model can serve as valuable resources for research on interdisciplinary dental diagnostics, offering clinicians a non-invasive, efficient method for early FD screening without invasive procedures.

The Machine Learning Models in Major Cardiovascular Adverse Events Prediction Based on Coronary Computed Tomography Angiography: Systematic Review.

Ma Y, Li M, Wu H

pubmed logopapersJun 13 2025
Coronary computed tomography angiography (CCTA) has emerged as the first-line noninvasive imaging test for patients at high risk of coronary artery disease (CAD). When combined with machine learning (ML), it provides more valid evidence in diagnosing major adverse cardiovascular events (MACEs). Radiomics provides informative multidimensional features that can help identify high-risk populations and can improve the diagnostic performance of CCTA. However, its role in predicting MACEs remains highly debated. We evaluated the diagnostic value of ML models constructed using radiomic features extracted from CCTA in predicting MACEs, and compared the performance of different learning algorithms and models, thereby providing clinical recommendations for the diagnosis, treatment, and prognosis of MACEs. We comprehensively searched 5 online databases, Cochrane Library, Web of Science, Elsevier, CNKI, and PubMed, up to September 10, 2024, for original studies that used ML models among patients who underwent CCTA to predict MACEs and reported clinical outcomes and endpoints related to it. Risk of bias in the ML models was assessed by the Prediction Model Risk of Bias Assessment Tool, while the radiomics quality score (RQS) was used to evaluate the methodological quality of the radiomics prediction model development and validation. We also followed the TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) guidelines to ensure transparency of ML models included. Meta-analysis was performed using Meta-DiSc software (version 1.4), which included the I² score and Cochran Q test, along with StataMP 17 (StataCorp) to assess heterogeneity and publication bias. Due to the high heterogeneity observed, subgroup analysis was conducted based on different model groups. Ten studies were included in the analysis, 5 (50%) of which differentiated between training and testing groups, where the training set collected 17 kinds of models and the testing set gathered 26 models. The pooled area under the receiver operating characteristic (AUROC) curve for ML models predicting MACEs was 0.7879 in the training set and 0.7981 in the testing set. Logistic regression (LR), the most commonly used algorithm, achieved an AUROC of 0.8229 in the testing group and 0.7983 in the training group. Non-LR models yielded AUROCs of 0.7390 in the testing set and 0.7648 in the training set, while the random forest (RF) models reached an AUROC of 0.8444 in the training group. Study limitations included a limited number of studies, high heterogeneity, and the types of included studies. The performance of ML models for predicting MACEs was found to be superior to that of general models based on basic feature extraction and integration from CCTA. Specifically, LR-based ML diagnostic models demonstrated significant clinical potential, particularly when combined with clinical features, and are worth further validation through more clinical trials. PROSPERO CRD42024596364; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024596364.
Page 2 of 45442 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.