An electromagnetic navigation surgical robotic system (ENSRS) for transthoracic puncture of small pulmonary nodules.
Authors
Abstract
To address the limitations of traditional CT-guided pulmonary nodule interventions, such as excessive radiation exposure, prolonged procedure times, and limited precision, we developed an electromagnetic navigation surgical robotic system (ENSRS) to enhance accuracy, efficiency, and safety in percutaneous procedures. The ENSRS integrates artificial intelligence to automate the segmentation of pulmonary nodules and surrounding anatomical structures, generating a detailed surgical environment. A customized path-planning algorithm facilitates minimally invasive access, whereas submillimeter localization using fiducial markers ensures precise coordinate registration. Adaptive multicalibration strategies and robust safety protocols enhance procedural reliability. System performance was evaluated through phantom and animal experiments, with comparisons to traditional CTguided techniques. The ENSRS achieved a groove localization error of 0.51 ± 0.27 mm across 63 patches and a classification accuracy of 100%. In phantom studies, it demonstrated significantly reduced puncture error (0.81 ± 0.98 mm vs. 3.50 ± 2.88 mm, p < 0.0001), required fewer CT scans (1.02 ± 0.25 vs. 1.53 ± 0.92) and shortened puncture times (39.01 ± 29.71 s). In animal experiments, ENSRS achieved improved accuracy (0.33 ± 0.74 mm vs. 1.86 ± 0.99 mm, p = 0.015). The safety outcomes were comparable between the groups, with one pneumothorax reported each. ENSRS improves the precision, efficiency, and safety of pulmonary nodule interventions, outperforming traditional CT-guided methods in phantom and animal models. This system offers a promising approach to pulmonary interventions by combining robotic precision with intelligent planning and tracking, potentially enhancing outcomes in minimally invasive procedures.