Sort by:
Page 2 of 212 results

Potential of artificial intelligence for radiation dose reduction in computed tomography -A scoping review.

Bani-Ahmad M, England A, McLaughlin L, Hadi YH, McEntee M

pubmed logopapersMay 7 2025
Artificial intelligence (AI) is now transforming medical imaging, with extensive ramifications for nearly every aspect of diagnostic imaging, including computed tomography (CT). This current work aims to review, evaluate, and summarise the role of AI in radiation dose optimisation across three fundamental domains in CT: patient positioning, scan range determination, and image reconstruction. A comprehensive scoping review of the literature was performed. Electronic databases including Scopus, Ovid, EBSCOhost and PubMed were searched between January 2018 and December 2024. Relevant articles were identified from their titles had their abstracts evaluated, and those deemed relevant had their full text reviewed. Extracted data from selected studies included the application of AI, radiation dose, anatomical part, and any relevant evaluation metrics based on the CT parameter in which AI is applied. 90 articles met the selection criteria. Included studies evaluated the performance of AI for dose optimisation through patient positioning, scan range determination, and reconstruction across various CT scans, including the abdomen, chest, head, neck, and pelvis, as well as CT angiography. A concise overview of the present state of AI in these three domains, emphasising benefits, limitations, and impact on the transformation of dose reduction in CT scanning, is provided. AI methods can help minimise positioning offsets and over-scanning caused by manual errors and helped to overcome the limitation associated with low-dose CT settings through deep learning image reconstruction algorithms. Further clinical integration of AI will continue to allow for improvements in optimising CT scan protocols and radiation dose. This review underscores the significance of AI in optimizing radiation doses in CT imaging, focusing on three key areas: patient positioning, scan range determination, and image reconstruction.

Cross-organ all-in-one parallel compressed sensing magnetic resonance imaging

Baoshun Shi, Zheng Liu, Xin Meng, Yan Yang

arxiv logopreprintMay 7 2025
Recent advances in deep learning-based parallel compressed sensing magnetic resonance imaging (p-CSMRI) have significantly improved reconstruction quality. However, current p-CSMRI methods often require training separate deep neural network (DNN) for each organ due to anatomical variations, creating a barrier to developing generalized medical image reconstruction systems. To address this, we propose CAPNet (cross-organ all-in-one deep unfolding p-CSMRI network), a unified framework that implements a p-CSMRI iterative algorithm via three specialized modules: auxiliary variable module, prior module, and data consistency module. Recognizing that p-CSMRI systems often employ varying sampling ratios for different organs, resulting in organ-specific artifact patterns, we introduce an artifact generation submodule, which extracts and integrates artifact features into the data consistency module to enhance the discriminative capability of the overall network. For the prior module, we design an organ structure-prompt generation submodule that leverages structural features extracted from the segment anything model (SAM) to create cross-organ prompts. These prompts are strategically incorporated into the prior module through an organ structure-aware Mamba submodule. Comprehensive evaluations on a cross-organ dataset confirm that CAPNet achieves state-of-the-art reconstruction performance across multiple anatomical structures using a single unified model. Our code will be published at https://github.com/shibaoshun/CAPNet.
Page 2 of 212 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.