Sort by:
Page 19 of 21210 results

Computational modeling of breast tissue mechanics and machine learning in cancer diagnostics: enhancing precision in risk prediction and therapeutic strategies.

Ashi L, Taurin S

pubmed logopapersMay 17 2025
Breast cancer remains a significant global health issue. Despite advances in detection and treatment, its complexity is driven by genetic, environmental, and structural factors. Computational methods like Finite Element Modeling (FEM) have transformed our understanding of breast cancer risk and progression. Advanced computational approaches in breast cancer research are the focus, with an emphasis on FEM's role in simulating breast tissue mechanics and enhancing precision in therapies such as radiofrequency ablation (RFA). Machine learning (ML), particularly Convolutional Neural Networks (CNNs), has revolutionized imaging modalities like mammograms and MRIs, improving diagnostic accuracy and early detection. AI applications in analyzing histopathological images have advanced tumor classification and grading, offering consistency and reducing inter-observer variability. Explainability tools like Grad-CAM, SHAP, and LIME enhance the transparency of AI-driven models, facilitating their integration into clinical workflows. Integrating FEM and ML represents a paradigm shift in breast cancer management. FEM offers precise modeling of tissue mechanics, while ML excels in predictive analytics and image analysis. Despite challenges such as data variability and limited standardization, synergizing these approaches promises adaptive, personalized care. These computational methods have the potential to redefine diagnostics, optimize treatment, and improve patient outcomes.

Breast Arterial Calcifications on Mammography: A Review of the Literature.

Rossi J, Cho L, Newell MS, Venta LA, Montgomery GH, Destounis SV, Moy L, Brem RF, Parghi C, Margolies LR

pubmed logopapersMay 17 2025
Identifying systemic disease with medical imaging studies may improve population health outcomes. Although the pathogenesis of peripheral arterial calcification and coronary artery calcification differ, breast arterial calcification (BAC) on mammography is associated with cardiovascular disease (CVD), a leading cause of death in women. While professional society guidelines on the reporting or management of BAC have not yet been established, and assessment and quantification methods are not yet standardized, the value of reporting BAC is being considered internationally as a possible indicator of subclinical CVD. Furthermore, artificial intelligence (AI) models are being developed to identify and quantify BAC on mammography, as well as to predict the risk of CVD. This review outlines studies evaluating the association of BAC and CVD, introduces the role of preventative cardiology in clinical management, discusses reasons to consider reporting BAC, acknowledges current knowledge gaps and barriers to assessing and reporting calcifications, and provides examples of how AI can be utilized to measure BAC and contribute to cardiovascular risk assessment. Ultimately, reporting BAC on mammography might facilitate earlier mitigation of cardiovascular risk factors in asymptomatic women.

The Role of Digital Technologies in Personalized Craniomaxillofacial Surgical Procedures.

Daoud S, Shhadeh A, Zoabi A, Redenski I, Srouji S

pubmed logopapersMay 17 2025
Craniomaxillofacial (CMF) surgery addresses complex challenges, balancing aesthetic and functional restoration. Digital technologies, including advanced imaging, virtual surgical planning, computer-aided design, and 3D printing, have revolutionized this field. These tools improve accuracy and optimize processes across all surgical phases, from diagnosis to postoperative evaluation. CMF's unique demands are met through patient-specific solutions that optimize outcomes. Emerging technologies like artificial intelligence, extended reality, robotics, and bioprinting promise to overcome limitations, driving the future of personalized, technology-driven CMF care.

The imaging crisis in axial spondyloarthritis.

Diekhoff T, Poddubnyy D

pubmed logopapersMay 16 2025
Imaging holds a pivotal yet contentious role in the early diagnosis of axial spondyloarthritis. Although MRI has enhanced our ability to detect early inflammatory changes, particularly bone marrow oedema in the sacroiliac joints, the poor specificity of this finding introduces a substantial risk of overdiagnosis. The well intentioned push by rheumatologists towards earlier intervention could inadvertently lead to the misclassification of mechanical or degenerative conditions (eg, osteitis condensans ilii) as inflammatory disease, especially in the absence of structural lesions. Diagnostic uncertainty is further fuelled by anatomical variability, sex differences, and suboptimal imaging protocols. Current strategies-such as quantifying bone marrow oedema and analysing its distribution patterns, and integrating clinical and laboratory data-offer partial guidance for avoiding overdiagnosis but fall short of resolving the core diagnostic dilemma. Emerging imaging technologies, including high-resolution sequences, quantitative MRI, radiomics, and artificial intelligence, could improve diagnostic precision, but these tools remain exploratory. This Viewpoint underscores the need for a shift in imaging approaches, recognising that although timely diagnosis and treatment is essential to prevent long-term structural damage, robust and reliable imaging criteria are also needed. Without such advances, the imaging field risks repeating past missteps seen in other rheumatological conditions.

Enhancing Craniomaxillofacial Surgeries with Artificial Intelligence Technologies.

Do W, van Nistelrooij N, Bergé S, Vinayahalingam S

pubmed logopapersMay 16 2025
Artificial intelligence (AI) can be applied in multiple subspecialties in craniomaxillofacial (CMF) surgeries. This article overviews AI fundamentals focusing on classification, object detection, and segmentation-core tasks used in CMF applications. The article then explores the development and integration of AI in dentoalveolar surgery, implantology, traumatology, oncology, craniofacial surgery, and orthognathic and feminization surgery. It highlights AI-driven advancements in diagnosis, pre-operative planning, intra-operative assistance, post-operative management, and outcome prediction. Finally, the challenges in AI adoption are discussed, including data limitations, algorithm validation, and clinical integration.

Diagnostic challenges of carpal tunnel syndrome in patients with congenital thenar hypoplasia: a comprehensive review.

Naghizadeh H, Salkhori O, Akrami S, Khabiri SS, Arabzadeh A

pubmed logopapersMay 16 2025
Carpal Tunnel Syndrome (CTS) is the most common entrapment neuropathy, frequently presenting with pain, numbness, and muscle weakness due to median nerve compression. However, diagnosing CTS becomes particularly challenging in patients with Congenital Thenar Hypoplasia (CTH), a rare congenital anomaly characterized by underdeveloped thenar muscles. The overlapping symptoms of CTH and CTS, such as thumb weakness, impaired hand function, and thenar muscle atrophy, can obscure the identification of median nerve compression. This review highlights the diagnostic complexities arising from this overlap and evaluates existing clinical, imaging, and electrophysiological assessment methods. While traditional diagnostic tests, including Phalen's and Tinel's signs, exhibit limited sensitivity in CTH patients, advanced imaging modalities like ultrasonography (US), magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI) provide valuable insights into structural abnormalities. Additionally, emerging technologies such as artificial intelligence (AI) enhance diagnostic precision by automating imaging analysis and identifying subtle nerve alterations. Combining clinical history, functional assessments, and advanced imaging, an interdisciplinary approach is critical to differentiate between CTH-related anomalies and CTS accurately. This comprehensive review underscores the need for tailored diagnostic protocols to improve early detection, personalised management, and outcomes for this unique patient population.

Exploring the Potential of Retrieval Augmented Generation for Question Answering in Radiology: Initial Findings and Future Directions.

Mou Y, Siepmann RM, Truhnn D, Sowe S, Decker S

pubmed logopapersMay 15 2025
This study explores the application of Retrieval-Augmented Generation (RAG) for question answering in radiology, an area where intelligent systems can significantly impact clinical decision-making. A preliminary experiment tested a naive RAG setup on nice radiology-specific questions with a textbook as the reference source, showing moderate improvements over baseline methods. The paper discusses lessons learned and potential enhancements for RAG in handling radiology knowledge, suggesting pathways for future research in integrating intelligent health systems in medical practice.

From error to prevention of wrong-level spine surgery: a review.

Javadnia P, Gohari H, Salimi N, Alimohammadi E

pubmed logopapersMay 15 2025
Wrong-level spine surgery remains a significant concern in spine surgery, leading to devastating consequences for patients and healthcare systems alike. This comprehensive review aims to analyze the existing literature on wrong-level spine surgery in spine procedures, identifying key factors that contribute to these errors and exploring advanced strategies and technologies designed to prevent them. A systematic literature search was conducted across multiple databases, including PubMed, Scopus, EMBASE, and CINAHL. The selection criteria focused on preclinical and clinical studies that specifically addressed wrong site and wrong level surgeries in the context of spine surgery. The findings reveal a range of contributing factors to wrong-level spine surgeries, including communication failures, inadequate preoperative planning, and insufficient surgical protocols. The review emphasizes the critical role of innovative technologies-such as artificial intelligence, advanced imaging techniques, and surgical navigation systems-alongside established safety protocols like digital checklists and simulation training in enhancing surgical accuracy and preventing errors. In conclusion, integrating advanced technologies and systematic safety protocols is instrumental in reducing the incidence of wrong-level spine surgeries. This review underscores the importance of continuous education and the adoption of innovative solutions to foster a culture of safety and improve surgical outcomes. By addressing the multifaceted challenges associated with these errors, the field can work towards minimizing their occurrence and enhancing patient care.

"MR Fingerprinting for Imaging Brain Hemodynamics and Oxygenation".

Coudert T, Delphin A, Barrier A, Barbier EL, Lemasson B, Warnking JM, Christen T

pubmed logopapersMay 15 2025
Over the past decade, several studies have explored the potential of magnetic resonance fingerprinting (MRF) for the quantification of brain hemodynamics, oxygenation, and perfusion. Recent advances in simulation models and reconstruction frameworks have also significantly enhanced the accuracy of vascular parameter estimation. This review provides an overview of key vascular MRF studies, emphasizing advancements in geometrical models for vascular simulations, novel sequences, and state-of-the-art reconstruction techniques incorporating machine learning and deep learning algorithms. Both pre-clinical and clinical applications are discussed. Based on these findings, we outline future directions and development areas that need to be addressed to facilitate their clinical translation. EVIDENCE LEVEL: N/A. TECHNICAL EFFICACY: Stage 1.
Page 19 of 21210 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.