Sort by:
Page 189 of 3963955 results

BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy

Ahmad Soliman, Ron Keuth, Marian Himstedt

arxiv logopreprintJul 2 2025
The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains -- virtual bronchoscopy, phantom as well as in-vivo and ex-vivo image data -- is pivotal for clinical applications. This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover our intermediate depth image representation allows to easily construct paired image data for training. Our experiments showed that input images from different domains (e.g. virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e. bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Through foundation models for intermediate depth representations, bronchial orifice segmentation integrated as anatomical constraints into conditional GANs we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.

Classification based deep learning models for lung cancer and disease using medical images

Ahmad Chaddad, Jihao Peng, Yihang Wu

arxiv logopreprintJul 2 2025
The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.

A Novel Two-step Classification Approach for Differentiating Bone Metastases From Benign Bone Lesions in SPECT/CT Imaging.

Xie W, Wang X, Liu M, Mai L, Shangguan H, Pan X, Zhan Y, Zhang J, Wu X, Dai Y, Pei Y, Zhang G, Yao Z, Wang Z

pubmed logopapersJul 2 2025
This study aims to develop and validate a novel two-step deep learning framework for the automated detection, segmentation, and classification of bone metastases in SPECT/CT imaging, accurately distinguishing malignant from benign lesions to improve early diagnosis and facilitate personalized treatment planning. A segmentation model, BL-Seg, was developed to automatically segment lesion regions in SPECT/CT images, utilizing a multi-scale attention fusion module and a triple attention mechanism to capture metabolic variations and refine lesion boundaries. A radiomics-based ensemble learning classifier was subsequently applied to integrate metabolic and texture features for benign-malignant differentiation. The framework was trained and evaluated using a proprietary dataset of SPECT/CT images collected from our institution. Performance metrics, including Dice coefficient, sensitivity, specificity, and AUC, were compared against conventional methods. The study utilized a dataset of SPECT/CT cases from our institution, divided into training and test sets acquired on Siemens SPECT/CT scanners with minor protocol differences. BL-Seg achieved a Dice coefficient of 0.8797, surpassing existing segmentation models. The classification model yielded an AUC of 0.8502, with improved sensitivity and specificity compared to traditional approaches. The proposed framework, with BL-Seg's automated lesion segmentation, demonstrates superior accuracy in detecting, segmenting, and classifying bone metastases, offering a robust tool for early diagnosis and personalized treatment planning in metastatic bone disease.

Multichannel deep learning prediction of major pathological response after neoadjuvant immunochemotherapy in lung cancer: a multicenter diagnostic study.

Geng Z, Li K, Mei P, Gong Z, Yan R, Huang Y, Zhang C, Zhao B, Lu M, Yang R, Wu G, Ye G, Liao Y

pubmed logopapersJul 2 2025
This study aimed to develop a pretreatment CT-based multichannel predictor integrating deep learning features encoded by Transformer models for preoperative diagnosis of major pathological response (MPR) in non-small cell lung cancer (NSCLC) patients receiving neoadjuvant immunochemotherapy. This multicenter diagnostic study retrospectively included 332 NSCLC patients from four centers. Pretreatment computed tomography images were preprocessed and segmented into region of interest cubes for radiomics modeling. These cubes were cropped into four groups of 2 dimensional image modules. GoogLeNet architecture was trained independently on each group within a multichannel framework, with gradient-weighted class activation mapping and SHapley Additive exPlanations value‌ for visualization. Deep learning features were carefully extracted and fused across the four image groups using the Transformer fusion model. After models training, model performance was evaluated via the area under the curve (AUC), sensitivity, specificity, F1 score, confusion matrices, calibration curves, decision curve analysis, integrated discrimination improvement, net reclassification improvement, and DeLong test. The dataset was allocated into training (n = 172, Center 1), internal validation (n = 44, Center 1), and external test (n = 116, Centers 2-4) cohorts. Four optimal deep learning models and the best Transformer fusion model were developed. In the external test cohort, traditional radiomics model exhibited an AUC of 0.736 [95% confidence interval (CI): 0.645-0.826]. The‌ optimal deep learning imaging ‌module‌ showed superior AUC of 0.855 (95% CI: 0.777-0.934). The fusion model named Transformer_GoogLeNet further improved classification accuracy (AUC = 0.924, 95% CI: 0.875-0.973). The new method of fusing multichannel deep learning with the Transformer Encoder can accurately diagnose whether NSCLC patients receiving neoadjuvant immunochemotherapy will achieve MPR. Our findings may support improved surgical planning and contribute to better treatment outcomes through more accurate preoperative assessment.

Development and validation of a deep learning ultrasound radiomics model for predicting drug resistance in lymph node tuberculosis a multicenter study.

Zhang X, Dong Z, Li H, Cheng Y, Tang W, Ni T, Zhang Y, Ai Q, Yang G

pubmed logopapersJul 2 2025
To develop and validate an ensemble machine learning ultrasound radiomics model for predicting drug resistance in lymph node tuberculosis (LNTB). This multicenter study retrospectively included 234 cervical LNTB patients from one center, randomly divided into training (70%) and internal validation (30%) cohorts. Radiomic features were extracted from ultrasound images, and an L1-based method was used for feature selection. A predictive model combining ensemble machine learning and AdaBoost algorithms was developed to predict drug resistance. Model performance was assessed using independent external test sets (Test A and Test B) from two other centres, with metrics including AUC, accuracy, precision, recall, F1 score, and decision curve analysis. Of the 851 radiometric features extracted, 161 were selected for the model. The model achieved AUCs of 0.998 (95% CI: 0.996-0.999), 0.798 (95% CI: 0.692-0.904), 0.846 (95% CI: 0.700-0.992), and 0.831 (95% CI: 0.688-0.974) in training, internal validation, and external test sets A and B, respectively. The decision curve analysis showed a substantial net benefit across a threshold probability range of 0.38 to 0.57. The LNTB resistance prediction model developed demonstrated high diagnostic efficacy in both internal and external validation. Radiomics, through the application of ensemble machine learning algorithms, provides new insights into drug resistance mechanisms and offers potential strategies for more effective patient treatment. Lymph node tuberculosis; Drug resistance; Ultrasound; Radiomics; Machine learning.

Individualized structural network deviations predict surgical outcome in mesial temporal lobe epilepsy: a multicentre validation study.

Feng L, Han H, Mo J, Huang Y, Huang K, Zhou C, Wang X, Zhang J, Yang Z, Liu D, Zhang K, Chen H, Liu Q, Li R

pubmed logopapersJul 2 2025
Surgical resection is an effective treatment for medically refractory mesial temporal lobe epilepsy (mTLE), however, more than one-third of patients fail to achieve seizure freedom after surgery. This study aimed to evaluate preoperative individual morphometric network characteristics and develop a machine learning model to predict surgical outcome in mTLE. This multicentre, retrospective study included 189 mTLE patients who underwent unilateral temporal lobectomy and 78 normal controls between February 2018 and June 2023. Postoperative seizure outcomes were categorized as seizure-free (SF, n = 125) or non-seizure-free (NSF, n = 64) at a minimum of one-year follow-up. The preoperative individualized structural covariance network (iSCN) derived from T1-weighted MRI was constructed for each patient by calculating deviations from the control-based reference distribution, and further divided into the surgery network and the surgically spared network using a standard resection mask by merging each patient's individual lacuna. Regional features were selected separately from bilateral, ipsilateral and contralateral iSCN abnormalities to train support vector machine models, validated in two independent external datasets. NSF patients showed greater iSCN deviations from the normative distribution in the surgically spared network compared to SF patients (P = 0.02). These deviations were widely distributed in the contralateral functional modules (P < 0.05, false discovery rate corrected). Seizure outcome was optimally predicted by the contralateral iSCN features, with an accuracy of 82% (P < 0.05, permutation test) and an area under the receiver operating characteristic curve (AUC) of 0.81, with the default mode and fronto-parietal areas contributing most. External validation in two independent cohorts showed accuracy of 80% and 88%, with AUC of 0.80 and 0.82, respectively, emphasizing the generalizability of the model. This study provides reliable personalized structural biomarkers for predicting surgical outcome in mTLE and has the potential to assist tailored surgical treatment strategies.

Performance of two different artificial intelligence models in dental implant planning among four different implant planning software: a comparative study.

Roongruangsilp P, Narkbuakaew W, Khongkhunthian P

pubmed logopapersJul 2 2025
The integration of artificial intelligence (AI) in dental implant planning has emerged as a transformative approach to enhance diagnostic accuracy and efficiency. This study aimed to evaluate the performance of two object detection models, Faster R-CNN and YOLOv7 in analyzing cross-sectional and panoramic images derived from DICOM files processed by four distinct dental imaging software platforms. The dataset consisted of 332 implant position images derived from DICOM files of 184 CBCT scans. Three hundred images were processed using DentiPlan Pro 3.7 software (NECTEC, NSTDA, Thailand) for the development of Faster R-CNN and YOLOv7 models for dental implant planning. For model testing, 32 additional implant position images, which were not included in the training set, were processed using four different software programs: DentiPlan Pro 3.7, DentiPlan Pro Plus 5.0 (DTP; NECTEC, NSTDA, Thailand), Implastation (ProDigiDent USA, USA), and Romexis 6.0 (Planmeca, Finland). The performance of the models was evaluated using detection rate, accuracy, precision, recall, F1 score, and the Jaccard Index (JI). Faster R-CNN achieved superior accuracy across imaging modalities, while YOLOv7 demonstrated higher detection rates, albeit with lower precision. The impact of image rendering algorithms on model performance underscores the need for standardized preprocessing pipelines. Although Faster R-CNN demonstrated relatively higher performance metrics, statistical analysis revealed no significant differences between the models (p-value > 0.05). This study emphasizes the potential of AI-driven solutions in dental implant planning and advocates the need for further research in this area. The absence of statistically significant differences between Faster R-CNN and YOLOv7 suggests that both models can be effectively utilized, depending on the specific requirements for accuracy or detection. Furthermore, the variations in imaging rendering algorithms across different software platforms significantly influenced the model outcomes. AI models for DICOM analysis should rely on standardized image rendering to ensure consistent performance.

Intelligent diagnosis model for chest X-ray images diseases based on convolutional neural network.

Yang S, Wu Y

pubmed logopapersJul 2 2025
To address misdiagnosis caused by feature coupling in multi-label medical image classification, this study introduces a chest X-ray pathology reasoning method. It combines hierarchical attention convolutional networks with a multi-label decoupling loss function. This method aims to enhance the precise identification of complex lesions. It dynamically captures multi-scale lesion morphological features and integrates lung field partitioning with lesion localization through a dual-path attention mechanism, thereby improving clinical disease prediction accuracy. An adaptive dilated convolution module with 3 × 3 deformable kernels dynamically captures multi-scale lesion features. A channel-space dual-path attention mechanism enables precise feature selection for lung field partitioning and lesion localization. Cross-scale skip connections fuse shallow texture and deep semantic information, enhancing microlesion detection. A KL divergence-constrained contrastive loss function decouples 14 pathological feature representations via orthogonal regularization, effectively resolving multi-label coupling. Experiments on ChestX-ray14 show a weighted F1-score of 0.97, Hamming Loss of 0.086, and AUC values exceeding 0.94 for all pathologies. This study provides a reliable tool for multi-disease collaborative diagnosis.

Retrieval-augmented generation elevates local LLM quality in radiology contrast media consultation.

Wada A, Tanaka Y, Nishizawa M, Yamamoto A, Akashi T, Hagiwara A, Hayakawa Y, Kikuta J, Shimoji K, Sano K, Kamagata K, Nakanishi A, Aoki S

pubmed logopapersJul 2 2025
Large language models (LLMs) demonstrate significant potential in healthcare applications, but clinical deployment is limited by privacy concerns and insufficient medical domain training. This study investigated whether retrieval-augmented generation (RAG) can improve locally deployable LLM for radiology contrast media consultation. In 100 synthetic iodinated contrast media consultations we compared Llama 3.2-11B (baseline and RAG) with three cloud-based models-GPT-4o mini, Gemini 2.0 Flash and Claude 3.5 Haiku. A blinded radiologist ranked the five replies per case, and three LLM-based judges scored accuracy, safety, structure, tone, applicability and latency. Under controlled conditions, RAG eliminated hallucinations (0% vs 8%; χ²₍Yates₎ = 6.38, p = 0.012) and improved mean rank by 1.3 (Z = -4.82, p < 0.001), though performance gaps with cloud models persist. The RAG-enhanced model remained faster (2.6 s vs 4.9-7.3 s) while the LLM-based judges preferred it over GPT-4o mini, though the radiologist ranked GPT-4o mini higher. RAG thus provides meaningful improvements for local clinical LLMs while maintaining the privacy benefits of on-premise deployment.
Page 189 of 3963955 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.