Intelligent diagnosis model for chest X-ray images diseases based on convolutional neural network.

Authors

Yang S,Wu Y

Affiliations (2)

  • Department of Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China.
  • Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China. [email protected].

Abstract

To address misdiagnosis caused by feature coupling in multi-label medical image classification, this study introduces a chest X-ray pathology reasoning method. It combines hierarchical attention convolutional networks with a multi-label decoupling loss function. This method aims to enhance the precise identification of complex lesions. It dynamically captures multi-scale lesion morphological features and integrates lung field partitioning with lesion localization through a dual-path attention mechanism, thereby improving clinical disease prediction accuracy. An adaptive dilated convolution module with 3 × 3 deformable kernels dynamically captures multi-scale lesion features. A channel-space dual-path attention mechanism enables precise feature selection for lung field partitioning and lesion localization. Cross-scale skip connections fuse shallow texture and deep semantic information, enhancing microlesion detection. A KL divergence-constrained contrastive loss function decouples 14 pathological feature representations via orthogonal regularization, effectively resolving multi-label coupling. Experiments on ChestX-ray14 show a weighted F1-score of 0.97, Hamming Loss of 0.086, and AUC values exceeding 0.94 for all pathologies. This study provides a reliable tool for multi-disease collaborative diagnosis.

Topics

Neural Networks, ComputerRadiography, ThoracicRadiographic Image Interpretation, Computer-AssistedLung DiseasesJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.