Sort by:
Page 18 of 24237 results

Multimodal ultrasound-based radiomics and deep learning for differential diagnosis of O-RADS 4-5 adnexal masses.

Zeng S, Jia H, Zhang H, Feng X, Dong M, Lin L, Wang X, Yang H

pubmed logopapersMay 23 2025
Accurate differentiation between benign and malignant adnexal masses is crucial for patients to avoid unnecessary surgical interventions. Ultrasound (US) is the most widely utilized diagnostic and screening tool for gynecological diseases, with contrast-enhanced US (CEUS) offering enhanced diagnostic precision by clearly delineating blood flow within lesions. According to the Ovarian and Adnexal Reporting and Data System (O-RADS), masses classified as categories 4 and 5 carry the highest risk of malignancy. However, the diagnostic accuracy of US remains heavily reliant on the expertise and subjective interpretation of radiologists. Radiomics has demonstrated significant value in tumor differential diagnosis by extracting microscopic information imperceptible to the human eye. Despite this, no studies to date have explored the application of CEUS-based radiomics for differentiating adnexal masses. This study aims to develop and validate a multimodal US-based nomogram that integrates clinical variables, radiomics, and deep learning (DL) features to effectively distinguish adnexal masses classified as O-RADS 4-5. From November 2020 to March 2024, we enrolled 340 patients who underwent two-dimensional US (2DUS) and CEUS and had masses categorized as O-RADS 4-5. These patients were randomly divided into a training cohort and a test cohort in a 7:3 ratio. Adnexal masses were manually segmented from 2DUS and CEUS images. Using machine learning (ML) and DL techniques, five models were developed and validated to differentiate adnexal masses. The diagnostic performance of these models was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, precision, and F1-score. Additionally, a nomogram was constructed to visualize outcome measures. The CEUS-based radiomics model outperformed the 2DUS model (AUC: 0.826 vs. 0.737). Similarly, the CEUS-based DL model surpassed the 2DUS model (AUC: 0.823 vs. 0.793). The ensemble model combining clinical variables, radiomics, and DL features achieved the highest AUC (0.929). Our study confirms the effectiveness of CEUS-based radiomics for distinguishing adnexal masses with high accuracy and specificity using a multimodal US-based radiomics DL nomogram. This approach holds significant promise for improving the diagnostic precision of adnexal masses classified as O-RADS 4-5.

Novel Deep Learning Framework for Simultaneous Assessment of Left Ventricular Mass and Longitudinal Strain: Clinical Feasibility and Validation in Patients with Hypertrophic Cardiomyopathy

Park, J., Yoon, Y. E., Jang, Y., Jung, T., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Chun, E. J., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 23 2025
BackgroundThis study aims to present the Segmentation-based Myocardial Advanced Refinement Tracking (SMART) system, a novel artificial intelligence (AI)-based framework for transthoracic echocardiography (TTE) that incorporates motion tracking and left ventricular (LV) myocardial segmentation for automated LV mass (LVM) and global longitudinal strain (LVGLS) assessment. MethodsThe SMART system demonstrates LV speckle tracking based on motion vector estimation, refined by structural information using endocardial and epicardial segmentation throughout the cardiac cycle. This approach enables automated measurement of LVMSMART and LVGLSSMART. The feasibility of SMART is validated in 111 hypertrophic cardiomyopathy (HCM) patients (median age: 58 years, 69% male) who underwent TTE and cardiac magnetic resonance imaging (CMR). ResultsLVGLSSMART showed a strong correlation with conventional manual LVGLS measurements (Pearsons correlation coefficient [PCC] 0.851; mean difference 0 [-2-0]). When compared to CMR as the reference standard for LVM, the conventional dimension-based TTE method overestimated LVM (PCC 0.652; mean difference: 106 [90-123]), whereas LVMSMART demonstrated excellent agreement with CMR (PCC 0.843; mean difference: 1 [-11-13]). For predicting extensive myocardial fibrosis, LVGLSSMART and LVMSMART exhibited performance comparable to conventional LVGLS and CMR (AUC: 0.72 and 0.66, respectively). Patients identified as high-risk for extensive fibrosis by LVGLSSMART and LVMSMART had significantly higher rates of adverse outcomes, including heart failure hospitalization, new-onset atrial fibrillation, and defibrillator implantation. ConclusionsThe SMART technique provides a comparable LVGLS evaluation and a more accurate LVM assessment than conventional TTE, with predictive values for myocardial fibrosis and adverse outcomes. These findings support its utility in HCM management.

High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework

Xuhang Chen, Zhuo Li, Yanyan Shen, Mufti Mahmud, Hieu Pham, Chi-Man Pun, Shuqiang Wang

arxiv logopreprintMay 23 2025
Functional ultrasound (fUS) imaging provides exceptional spatiotemporal resolution for neurovascular mapping, yet its practical application is significantly hampered by critical challenges. Foremost among these are data scarcity, arising from ethical considerations and signal degradation through the cranium, which collectively limit dataset diversity and compromise the fairness of downstream machine learning models.

Construction of a Prediction Model for Adverse Perinatal Outcomes in Foetal Growth Restriction Based on a Machine Learning Algorithm: A Retrospective Study.

Meng X, Wang L, Wu M, Zhang N, Li X, Wu Q

pubmed logopapersMay 23 2025
To create and validate a machine learning (ML)-based model for predicting the adverse perinatal outcome (APO) in foetal growth restriction (FGR) at diagnosis. A retrospective study. Multi-centre in China. Pregnancies affected by FGR. We enrolled singleton foetuses with a perinatal diagnosis of FGR who were admitted between January 2021 and November 2023. A total of 361 pregnancies from Beijing Obstetrics and Gynecology Hospital were used as the training set and the internal test set. In comparison, data from 50 pregnancies from Haidian Maternal and Child Health Hospital were used as the external test set. Feature screening was performed using the random forest (RF), the Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression (LR). Subsequently, six ML methods, including Stacking, were used to construct models to predict the APO of FGR. Model's performance was evaluated through indicators such as the area under the receiver operating characteristic curve (AUROC). The Shapley Additive Explanation analysis was used to rank each model feature and explain the final model. Mean ± SD gestational age at diagnosis was 32.3 ± 4.8 weeks in the absent APO group and 27.3 ± 3.7 in the present APO group. Women enrolled in the present APO group had a higher rate of hypertension related to pregnancy (74.8% vs. 18.8%, p < 0.001). Among 17 candidate predictors (including maternal characteristics, maternal comorbidities, obstetric characteristics and ultrasound parameters), the integration of RF, LASSO and LR methodologies identified maternal body mass index, hypertension, gestational age at diagnosis of FGR, estimated foetal weight (EFW) z score, EFW growth velocity and abnormal umbilical artery Doppler (defined as a pulsatility index above the 95th percentile or instances of absent/reversed diastolic flow) as significant predictors. The Stacking model demonstrated a good performance in both the internal test set [AUROC: 0.861, 95% confidence interval (CI), 0.838-0.896] and the external test set [AUROC: 0.906, 95% CI, 0.875-0.947]. The calibration curve showed high agreement between the predicted and observed risks. The Hosmer-Lemeshow test for the internal and external test sets was p = 0.387 and p = 0.825, respectively. The ML algorithm for APO, which integrates maternal clinical factors and ultrasound parameters, demonstrates good predictive value for APO in FGR at diagnosis. This suggested that ML techniques may be a valid approach for the early detection of high-risk APO in FGR pregnancies.

Update on the detection of frailty in older adults: a multicenter cohort machine learning-based study protocol.

Fernández-Carnero S, Martínez-Pozas O, Pecos-Martín D, Pardo-Gómez A, Cuenca-Zaldívar JN, Sánchez-Romero EA

pubmed logopapersMay 21 2025
This study aims to investigate the relationship between muscle activation variables assessed via ultrasound and the comprehensive assessment of geriatric patients, as well as to analyze ultrasound images to determine their correlation with morbimortality factors in frail patients. The present cohort study will be conducted in 500 older adults diagnosed with frailty. A multicenter study will be conducted among the day care centers and nursing homes. This will be achieved through the evaluation of frail older adults via instrumental and functional tests, along with specific ultrasound images to study sarcopenia and nutrition, followed by a detailed analysis of the correlation between all collected variables. This study aims to investigate the correlation between ultrasound-assessed muscle activation variables and the overall health of geriatric patients. It addresses the limitations of previous research by including a large sample size of 500 patients and measuring various muscle parameters beyond thickness. Additionally, it aims to analyze ultrasound images to identify markers associated with higher risk of complications in frail patients. The study involves frail older adults undergoing functional tests and specific ultrasound examinations. A comprehensive analysis of functional, ultrasound, and nutritional variables will be conducted to understand their correlation with overall health and risk of complications in frail older patients. The study was approved by the Research Ethics Committee of the Hospital Universitario Puerta de Hierro, Madrid, Spain (Act nº 18/2023). In addition, the study was registered with https://clinicaltrials.gov/ (NCT06218121).

An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study.

Zhong L, Shi L, Li W, Zhou L, Wang K, Gu L

pubmed logopapersMay 21 2025
Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III). Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed. The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively. The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).

An explainable AI-driven deep neural network for accurate breast cancer detection from histopathological and ultrasound images.

Alom MR, Farid FA, Rahaman MA, Rahman A, Debnath T, Miah ASM, Mansor S

pubmed logopapersMay 20 2025
Breast cancer represents a significant global health challenge, which makes it essential to detect breast cancer early and accurately to improve patient prognosis and reduce mortality rates. However, traditional diagnostic processes relying on manual analysis of medical images are inherently complex and subject to variability between observers, highlighting the urgent need for robust automated breast cancer detection systems. While deep learning has demonstrated potential, many current models struggle with limited accuracy and lack of interpretability. This research introduces the Deep Neural Breast Cancer Detection (DNBCD) model, an explainable AI-based framework that utilizes deep learning methods for classifying breast cancer using histopathological and ultrasound images. The proposed model employs Densenet121 as a foundation, integrating customized Convolutional Neural Network (CNN) layers including GlobalAveragePooling2D, Dense, and Dropout layers along with transfer learning to achieve both high accuracy and interpretability for breast cancer diagnosis. The proposed DNBCD model integrates several preprocessing techniques, including image normalization and resizing, and augmentation techniques to enhance the model's robustness and address class imbalances using class weight. It employs Grad-CAM (Gradient-weighted Class Activation Mapping) to offer visual justifications for its predictions, increasing trust and transparency among healthcare providers. The model was assessed using two benchmark datasets: Breakhis-400x (B-400x) and Breast Ultrasound Images Dataset (BUSI) containing 1820 and 1578 images, respectively. We systematically divided the datasets into training (70%), testing (20%,) and validation (10%) sets, ensuring efficient model training and evaluation obtaining accuracies of 93.97% for B-400x dataset having benign and malignant classes and 89.87% for BUSI dataset having benign, malignant, and normal classes for breast cancer detection. Experimental results demonstrate that the proposed DNBCD model significantly outperforms existing state-of-the-art approaches with potential uses in clinical environments. We also made all the materials publicly accessible for the research community at: https://github.com/romzanalom/XAI-Based-Deep-Neural-Breast-Cancer-Detection .

Automated Fetal Biometry Assessment with Deep Ensembles using Sparse-Sampling of 2D Intrapartum Ultrasound Images

Jayroop Ramesh, Valentin Bacher, Mark C. Eid, Hoda Kalabizadeh, Christian Rupprecht, Ana IL Namburete, Pak-Hei Yeung, Madeleine K. Wyburd, Nicola K. Dinsdale

arxiv logopreprintMay 20 2025
The International Society of Ultrasound advocates Intrapartum Ultrasound (US) Imaging in Obstetrics and Gynecology (ISUOG) to monitor labour progression through changes in fetal head position. Two reliable ultrasound-derived parameters that are used to predict outcomes of instrumental vaginal delivery are the angle of progression (AoP) and head-symphysis distance (HSD). In this work, as part of the Intrapartum Ultrasounds Grand Challenge (IUGC) 2024, we propose an automated fetal biometry measurement pipeline to reduce intra- and inter-observer variability and improve measurement reliability. Our pipeline consists of three key tasks: (i) classification of standard planes (SP) from US videos, (ii) segmentation of fetal head and pubic symphysis from the detected SPs, and (iii) computation of the AoP and HSD from the segmented regions. We perform sparse sampling to mitigate class imbalances and reduce spurious correlations in task (i), and utilize ensemble-based deep learning methods for task (i) and (ii) to enhance generalizability under different US acquisition settings. Finally, to promote robustness in task iii) with respect to the structural fidelity of measurements, we retain the largest connected components and apply ellipse fitting to the segmentations. Our solution achieved ACC: 0.9452, F1: 0.9225, AUC: 0.983, MCC: 0.8361, DSC: 0.918, HD: 19.73, ASD: 5.71, $\Delta_{AoP}$: 8.90 and $\Delta_{HSD}$: 14.35 across an unseen hold-out set of 4 patients and 224 US frames. The results from the proposed automated pipeline can improve the understanding of labour arrest causes and guide the development of clinical risk stratification tools for efficient and effective prenatal care.

Blind Restoration of High-Resolution Ultrasound Video

Chu Chen, Kangning Cui, Pasquale Cascarano, Wei Tang, Elena Loli Piccolomini, Raymond H. Chan

arxiv logopreprintMay 20 2025
Ultrasound imaging is widely applied in clinical practice, yet ultrasound videos often suffer from low signal-to-noise ratios (SNR) and limited resolutions, posing challenges for diagnosis and analysis. Variations in equipment and acquisition settings can further exacerbate differences in data distribution and noise levels, reducing the generalizability of pre-trained models. This work presents a self-supervised ultrasound video super-resolution algorithm called Deep Ultrasound Prior (DUP). DUP employs a video-adaptive optimization process of a neural network that enhances the resolution of given ultrasound videos without requiring paired training data while simultaneously removing noise. Quantitative and visual evaluations demonstrate that DUP outperforms existing super-resolution algorithms, leading to substantial improvements for downstream applications.

Longitudinal Validation of a Deep Learning Index for Aortic Stenosis Progression

Park, J., Kim, J., Yoon, Y. E., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J., Park, J.-H.

medrxiv logopreprintMay 19 2025
AimsAortic stenosis (AS) is a progressive disease requiring timely monitoring and intervention. While transthoracic echocardiography (TTE) remains the diagnostic standard, deep learning (DL)-based approaches offer potential for improved disease tracking. This study examined the longitudinal changes in a previously developed DL-derived index for AS continuum (DLi-ASc) and assessed its value in predicting progression to severe AS. Methods and ResultsWe retrospectively analysed 2,373 patients a(7,371 TTEs) from two tertiary hospitals. DLi-ASc (scaled 0-100), derived from parasternal long- and/or short-axis views, was tracked longitudinally. DLi-ASc increased in parallel with worsening AS stages (p for trend <0.001) and showed strong correlations with AV maximal velocity (Vmax) (Pearson correlation coefficients [PCC] = 0.69, p<0.001) and mean pressure gradient (mPG) (PCC = 0.66, p<0.001). Higher baseline DLi-ASc was associated with a faster AS progression rate (p for trend <0.001). Additionally, the annualised change in DLi-ASc, estimated using linear mixed-effect models, correlated strongly with the annualised progression of AV Vmax (PCC = 0.71, p<0.001) and mPG (PCC = 0.68, p<0.001). In Fine-Gray competing risk models, baseline DLi-ASc independently predicted progression to severe AS, even after adjustment for AV Vmax or mPG (hazard ratio per 10-point increase = 2.38 and 2.80, respectively) ConclusionDLi-ASc increased in parallel with AS progression and independently predicted severe AS progression. These findings support its role as a non-invasive imaging-based digital marker for longitudinal AS monitoring and risk stratification.
Page 18 of 24237 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.