Sort by:
Page 172 of 1861852 results

Comparison between multimodal foundation models and radiologists for the diagnosis of challenging neuroradiology cases with text and images.

Le Guellec B, Bruge C, Chalhoub N, Chaton V, De Sousa E, Gaillandre Y, Hanafi R, Masy M, Vannod-Michel Q, Hamroun A, Kuchcinski G

pubmed logopapersMay 9 2025
The purpose of this study was to compare the ability of two multimodal models (GPT-4o and Gemini 1.5 Pro) with that of radiologists to generate differential diagnoses from textual context alone, key images alone, or a combination of both using complex neuroradiology cases. This retrospective study included neuroradiology cases from the "Diagnosis Please" series published in the Radiology journal between January 2008 and September 2024. The two multimodal models were asked to provide three differential diagnoses from textual context alone, key images alone, or the complete case. Six board-certified neuroradiologists solved the cases in the same setting, randomly assigned to two groups: context alone first and images alone first. Three radiologists solved the cases without, and then with the assistance of Gemini 1.5 Pro. An independent radiologist evaluated the quality of the image descriptions provided by GPT-4o and Gemini for each case. Differences in correct answers between multimodal models and radiologists were analyzed using McNemar test. GPT-4o and Gemini 1.5 Pro outperformed radiologists using clinical context alone (mean accuracy, 34.0 % [18/53] and 44.7 % [23.7/53] vs. 16.4 % [8.7/53]; both P < 0.01). Radiologists outperformed GPT-4o and Gemini 1.5 Pro using images alone (mean accuracy, 42.0 % [22.3/53] vs. 3.8 % [2/53], and 7.5 % [4/53]; both P < 0.01) and the complete cases (48.0 % [25.6/53] vs. 34.0 % [18/53], and 38.7 % [20.3/53]; both P < 0.001). While radiologists improved their accuracy when combining multimodal information (from 42.1 % [22.3/53] for images alone to 50.3 % [26.7/53] for complete cases; P < 0.01), GPT-4o and Gemini 1.5 Pro did not benefit from the multimodal context (from 34.0 % [18/53] for text alone to 35.2 % [18.7/53] for complete cases for GPT-4o; P = 0.48, and from 44.7 % [23.7/53] to 42.8 % [22.7/53] for Gemini 1.5 Pro; P = 0.54). Radiologists benefited significantly from the suggestion of Gemini 1.5 Pro, increasing their accuracy from 47.2 % [25/53] to 56.0 % [27/53] (P < 0.01). Both GPT-4o and Gemini 1.5 Pro correctly identified the imaging modality in 53/53 (100 %) and 51/53 (96.2 %) cases, respectively, but frequently failed to identify key imaging findings (43/53 cases [81.1 %] with incorrect identification of key imaging findings for GPT-4o and 50/53 [94.3 %] for Gemini 1.5). Radiologists show a specific ability to benefit from the integration of textual and visual information, whereas multimodal models mostly rely on the clinical context to suggest diagnoses.

Resting-state functional MRI metrics to detect freezing of gait in Parkinson's disease: a machine learning approach.

Vicidomini C, Fontanella F, D'Alessandro T, Roviello GN, De Stefano C, Stocchi F, Quarantelli M, De Pandis MF

pubmed logopapersMay 9 2025
Among the symptoms that can occur in Parkinson's disease (PD), Freezing of Gait (FOG) is a disabling phenomenon affecting a large proportion of patients, and it remains not fully understood. Accurate classification of FOG in PD is crucial for tailoring effective interventions and is necessary for a better understanding of its underlying mechanisms. In the present work, we applied four Machine Learning (ML) classifiers (Decision Tree - DT, Random Forest - RF, Multilayer Perceptron - MLP, Logistic Regression - LOG) to different four metrics derived from resting-state functional Magnetic Resonance Imaging (rs-fMRI) data processing to assess their accuracy in automatically classifying PD patients based on the presence or absence of Freezing of Gait (FOG). To validate our approach, we applied the same methodologies to distinguish PD patients from a group of Healthy Subject (HS). The performance of the four ML algorithms was validated by repeated k-fold cross-validation on randomly selected independent training and validation subsets. The results showed that when discriminating PD from HS, the best performance was achieved using RF applied to fractional Amplitude of Low-Frequency Fluctuations (fALFF) data (AUC 96.8 ± 2 %). Similarly, when discriminating PD-FOG from PD-nFOG, the RF algorithm was again the best performer on all four metrics, with AUCs above 90 %. Finally, trying to unbox how AI system black-box choices were made, we extracted features' importance scores for the best-performing method(s) and discussed them based on the results obtained to date in rs-fMRI studies on FOG in PD and, more generally, in PD. In summary, regions that were more frequently selected when differentiating both PD from HS and PD-FOG from PD-nFOG patients were mainly relevant to the extrapyramidal system, as well as visual and default mode networks. In addition, the salience network and the supplementary motor area played an additional major role in differentiating PD-FOG from PD-nFOG patients.

CT-based quantification of intratumoral heterogeneity for predicting distant metastasis in retroperitoneal sarcoma.

Xu J, Miao JG, Wang CX, Zhu YP, Liu K, Qin SY, Chen HS, Lang N

pubmed logopapersMay 9 2025
Retroperitoneal sarcoma (RPS) is highly heterogeneous, leading to different risks of distant metastasis (DM) among patients with the same clinical stage. This study aims to develop a quantitative method for assessing intratumoral heterogeneity (ITH) using preoperative contrast-enhanced CT (CECT) scans and evaluate its ability to predict DM risk. We conducted a retrospective analysis of 274 PRS patients who underwent complete surgical resection and were monitored for ≥ 36 months at two centers. Conventional radiomics (C-radiomics), ITH radiomics, and deep-learning (DL) features were extracted from the preoperative CECT scans and developed single-modality models. Clinical indicators and high-throughput CECT features were integrated to develop a combined model for predicting DM. The performance of the models was evaluated by measuring the receiver operating characteristic curve and Harrell's concordance index (C-index). Distant metastasis-free survival (DMFS) was also predicted to further assess survival benefits. The ITH model demonstrated satisfactory predictive capability for DM in internal and external validation cohorts (AUC: 0.735, 0.765; C-index: 0.691, 0.729). The combined model that combined clinicoradiological variables, ITH-score, and DL-score achieved the best predictive performance in internal and external validation cohorts (AUC: 0.864, 0.801; C-index: 0.770, 0.752), successfully stratified patients into high- and low-risk groups for DM (p < 0.05). The combined model demonstrated promising potential for accurately predicting the DM risk and stratifying the DMFS risk in RPS patients undergoing complete surgical resection, providing a valuable tool for guiding treatment decisions and follow-up strategies. The intratumoral heterogeneity analysis facilitates the identification of high-risk retroperitoneal sarcoma patients prone to distant metastasis and poor prognoses, enabling the selection of candidates for more aggressive surgical and post-surgical interventions. Preoperative identification of retroperitoneal sarcoma (RPS) with a high potential for distant metastasis (DM) is crucial for targeted interventional strategies. Quantitative assessment of intratumoral heterogeneity achieved reasonable performance for predicting DM. The integrated model combining clinicoradiological variables, ITH radiomics, and deep-learning features effectively predicted distant metastasis-free survival.

Deep learning for Parkinson's disease classification using multimodal and multi-sequences PET/MR images.

Chang Y, Liu J, Sun S, Chen T, Wang R

pubmed logopapersMay 9 2025
We aimed to use deep learning (DL) techniques to accurately differentiate Parkinson's disease (PD) from multiple system atrophy (MSA), which share similar clinical presentations. In this retrospective analysis, 206 patients who underwent PET/MR imaging at the Chinese PLA General Hospital were included, having been clinically diagnosed with either PD or MSA; an additional 38 healthy volunteers served as normal controls (NC). All subjects were randomly assigned to the training and test sets at a ratio of 7:3. The input to the model consists of 10 two-dimensional (2D) slices in axial, coronal, and sagittal planes from multi-modal images. A modified Residual Block Network with 18 layers (ResNet18) was trained with different modal images, to classify PD, MSA, and NC. A four-fold cross-validation method was applied in the training set. Performance evaluations included accuracy, precision, recall, F1 score, Receiver operating characteristic (ROC), and area under the ROC curve (AUC). Six single-modal models and seven multi-modal models were trained and tested. The PET models outperformed MRI models. The <sup>11</sup>C-methyl-N-2β-carbomethoxy-3β-(4-fluorophenyl)-tropanel (<sup>11</sup>C-CFT) -Apparent Diffusion Coefficient (ADC) model showed the best classification, which resulted in 0.97 accuracy, 0.93 precision, 0.95 recall, 0.92 F1, and 0.96 AUC. In the test set, the accuracy, precision, recall, and F1 score of the CFT-ADC model were 0.70, 0.73, 0.93, and 0.82, respectively. The proposed DL method shows potential as a high-performance assisting tool for the accurate diagnosis of PD and MSA. A multi-modal and multi-sequence model could further enhance the ability to classify PD.

Multiparameter MRI-based model integrating radiomics and deep learning for preoperative staging of laryngeal squamous cell carcinoma.

Xie K, Jiang H, Chen X, Ning Y, Yu Q, Lv F, Liu R, Zhou Y, Xu L, Yue Q, Peng J

pubmed logopapersMay 9 2025
The accurate preoperative staging of laryngeal squamous cell carcinoma (LSCC) provides valuable guidance for clinical decision-making. The objective of this study was to establish a multiparametric MRI model using radiomics and deep learning (DL) to preoperatively distinguish between Stages I-II and III-IV of LSCC. Data from 401 histologically confirmed LSCC patients were collected from two centers (training set: 213; internal test set: 91; external test set: 97). Radiomics features were extracted from the MRI images, and seven radiomics models based on single and combined sequences were developed via random forest (RF). A DL model was constructed via ResNet 18, where DL features were extracted from its final fully connected layer. These features were fused with crucial radiomics features to create a combined model. The performance of the models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and compared with the radiologist performances. The predictive capability of the combined model for Progression-Free Survival (PFS) was evaluated via Kaplan-Meier survival analysis and the Harrell's Concordance Index (C-index). In the external test set, the combined model had an AUC of 0.877 (95% CI 0.807-0.946), outperforming the DL model (AUC: 0.811) and the optimal radiomics model (AUC: 0.835). The combined model significantly outperformed both the DL (p = 0.017) and the optimal radiomics models (p = 0.039), and the radiologists (both p < 0.050). Moreover, the combined model demonstrated great prognostic predictive value in patients with LSCC, achieving a C-index of 0.624 for PFS. This combined model enhances preoperative LSCC staging, aiding in making more informed clinical decisions.

Application of Artificial Intelligence in Cardio-Oncology Imaging for Cancer Therapy-Related Cardiovascular Toxicity: Systematic Review.

Mushcab H, Al Ramis M, AlRujaib A, Eskandarani R, Sunbul T, AlOtaibi A, Obaidan M, Al Harbi R, Aljabri D

pubmed logopapersMay 9 2025
Artificial intelligence (AI) is a revolutionary tool yet to be fully integrated into several health care sectors, including medical imaging. AI can transform how medical imaging is conducted and interpreted, especially in cardio-oncology. This study aims to systematically review the available literature on the use of AI in cardio-oncology imaging to predict cardiotoxicity and describe the possible improvement of different imaging modalities that can be achieved if AI is successfully deployed to routine practice. We conducted a database search in PubMed, Ovid MEDLINE, Cochrane Library, CINAHL, and Google Scholar from inception to 2023 using the AI research assistant tool (Elicit) to search for original studies reporting AI outcomes in adult patients diagnosed with any cancer and undergoing cardiotoxicity assessment. Outcomes included incidence of cardiotoxicity, left ventricular ejection fraction, risk factors associated with cardiotoxicity, heart failure, myocardial dysfunction, signs of cancer therapy-related cardiovascular toxicity, echocardiography, and cardiac magnetic resonance imaging. Descriptive information about each study was recorded, including imaging technique, AI model, outcomes, and limitations. The systematic search resulted in 7 studies conducted between 2018 and 2023, which are included in this review. Most of these studies were conducted in the United States (71%), included patients with breast cancer (86%), and used magnetic resonance imaging as the imaging modality (57%). The quality assessment of the studies had an average of 86% compliance in all of the tool's sections. In conclusion, this systematic review demonstrates the potential of AI to enhance cardio-oncology imaging for predicting cardiotoxicity in patients with cancer. Our findings suggest that AI can enhance the accuracy and efficiency of cardiotoxicity assessments. However, further research through larger, multicenter trials is needed to validate these applications and refine AI technologies for routine use, paving the way for improved patient outcomes in cancer survivors at risk of cardiotoxicity.

Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography.

Knopp M, Bender CJ, Holzwarth N, Li Y, Kempf J, Caranovic M, Knieling F, Lang W, Rother U, Seitel A, Maier-Hein L, Dreher KK

pubmed logopapersMay 9 2025
Shortcut learning has been identified as a source of algorithmic unfairness in medical imaging artificial intelligence (AI), but its impact on photoacoustic tomography (PAT), particularly concerning sex bias, remains underexplored. This study investigates this issue using peripheral artery disease (PAD) diagnosis as a specific clinical application. To examine the potential for sex bias due to shortcut learning in convolutional neural network (CNNs) and assess how such biases might affect diagnostic predictions, we created training and test datasets with varying PAD prevalence between sexes. Using these datasets, we explored (1) whether CNNs can classify the sex from imaging data, (2) how sex-specific prevalence shifts impact PAD diagnosis performance and underdiagnosis disparity between sexes, and (3) how similarly CNNs encode sex and PAD features. Our study with 147 individuals demonstrates that CNNs can classify the sex from calf muscle PAT images, achieving an AUROC of 0.75. For PAD diagnosis, models trained on data with imbalanced sex-specific disease prevalence experienced significant performance drops (up to 0.21 AUROC) when applied to balanced test sets. Additionally, greater imbalances in sex-specific prevalence within the training data exacerbated underdiagnosis disparities between sexes. Finally, we identify evidence of shortcut learning by demonstrating the effective reuse of learned feature representations between PAD diagnosis and sex classification tasks. CNN-based models trained on PAT data may engage in shortcut learning by leveraging sex-related features, leading to biased and unreliable diagnostic predictions. Addressing demographic-specific prevalence imbalances and preventing shortcut learning is critical for developing models in the medical field that are both accurate and equitable across diverse patient populations.

APD-FFNet: A Novel Explainable Deep Feature Fusion Network for Automated Periodontitis Diagnosis on Dental Panoramic Radiography.

Resul ES, Senirkentli GB, Bostanci E, Oduncuoglu BF

pubmed logopapersMay 9 2025
This study introduces APD-FFNet, a novel, explainable deep learning architecture for automated periodontitis diagnosis using panoramic radiographs. A total of 337 panoramic radiographs, annotated by a periodontist, served as the dataset. APD-FFNet combines custom convolutional and transformer-based layers within a deep feature fusion framework that captures both local and global contextual features. Performance was evaluated using accuracy, the F1 score, the area under the receiver operating characteristic curve, the Jaccard similarity coefficient, and the Matthews correlation coefficient. McNemar's test confirmed statistical significance, and SHapley Additive exPlanations provided interpretability insights. APD-FFNet achieved 94% accuracy, a 93.88% F1 score, 93.47% area under the receiver operating characteristic curve, 88.47% Jaccard similarity coefficient, and 88.46% Matthews correlation coefficient, surpassing comparable approaches. McNemar's test validated these findings (p < 0.05). Explanations generated by SHapley Additive exPlanations highlighted important regions in each radiograph, supporting clinical applicability. By merging convolutional and transformer-based layers, APD-FFNet establishes a new benchmark in automated, interpretable periodontitis diagnosis, with low hyperparameter sensitivity facilitating its integration into regular dental practice. Its adaptable design suggests broader relevance to other medical imaging domains. This is the first feature fusion method specifically devised for periodontitis diagnosis, supported by an expert-curated dataset and advanced explainable artificial intelligence. Its robust accuracy, low hyperparameter sensitivity, and transparent outputs set a new standard for automated periodontal analysis.

The present and future of lung cancer screening: latest evidence.

Gutiérrez Alliende J, Kazerooni EA, Crosbie PAJ, Xie X, Sharma A, Reis J

pubmed logopapersMay 9 2025
Lung cancer is the leading cause of cancer-related mortality worldwide. Early lung cancer detection improves lung cancer-related mortality and survival. This report summarizes presentations and panel discussions from a webinar, "The Present and Future of Lung Cancer Screening: Latest Evidence and AI Perspectives." The webinar provided the perspectives of experts from the United States, United Kingdom, and China on evidence-based recommendations and management in lung cancer screening (LCS), barriers, and the role of artificial intelligence (AI). With several countries now incorporating the utilization of AI in their screening programs, AI offers potential solutions to some of the challenges associated with LCS.

Harnessing Advanced Machine Learning Techniques for Microscopic Vessel Segmentation in Pulmonary Fibrosis Using Novel Hierarchical Phase-Contrast Tomography Images.

Vasudev P, Azimbagirad M, Aslani S, Xu M, Wang Y, Chapman R, Coleman H, Werlein C, Walsh C, Lee P, Tafforeau P, Jacob J

pubmed logopapersMay 9 2025
 Fibrotic lung disease is a progressive illness that causes scarring and ultimately respiratory failure, with irreversible damage by the time it is diagnosed on computed tomography imaging. Recent research postulates the role of the lung vasculature on the pathogenesis of the disease. With the recent development of high-resolution hierarchical phase-contrast tomography (HiP-CT), we have the potential to understand and detect changes in the lungs long before conventional imaging. However, to gain quantitative insight into vascular changes you first need to be able to segment the vessels before further downstream analysis can be conducted. Aside from this, HiP-CT generates large-volume, high-resolution data which is time-consuming and expensive to label.  This project aims to qualitatively assess the latest machine learning methods for vessel segmentation in HiP-CT data to enable label propagation as the first step for imaging biomarker discovery, with the goal to identify early-stage interstitial lung disease amenable to treatment, before fibrosis begins.  Semisupervised learning (SSL) has become a growing method to tackle sparsely labeled datasets due to its leveraging of unlabeled data. In this study, we will compare two SSL methods; Seg PL, based on pseudo-labeling, and MisMatch, using consistency regularization against state-of-the-art supervised learning method, nnU-Net, on vessel segmentation in sparsely labeled lung HiP-CT data.  On initial experimentation, both MisMatch and SegPL showed promising performance on qualitative review. In comparison with supervised learning, both MisMatch and SegPL showed better out-of-distribution performance within the same sample (different vessel morphology and texture vessels), though supervised learning provided more consistent segmentations for well-represented labels in the limited annotations.  Further quantitative research is required to better assess the generalizability of these findings, though they show promising first steps toward leveraging this novel data to tackle fibrotic lung disease.
Page 172 of 1861852 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.