Sort by:
Page 171 of 1781774 results

Artificial intelligence applied to ultrasound diagnosis of pelvic gynecological tumors: a systematic review and meta-analysis.

Geysels A, Garofalo G, Timmerman S, Barreñada L, De Moor B, Timmerman D, Froyman W, Van Calster B

pubmed logopapersMay 8 2025
To perform a systematic review on artificial intelligence (AI) studies focused on identifying and differentiating pelvic gynecological tumors on ultrasound scans. Studies developing or validating AI models for diagnosing gynecological pelvic tumors on ultrasound scans were eligible for inclusion. We systematically searched PubMed, Embase, Web of Science, and Cochrane Central from their database inception until April 30th, 2024. To assess the quality of the included studies, we adapted the QUADAS-2 risk of bias tool to address the unique challenges of AI in medical imaging. Using multi-level random effects models, we performed a meta-analysis to generate summary estimates of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To provide a reference point of current diagnostic support tools for ultrasound examiners, we descriptively compared the pooled performance to that of the well-recognized ADNEX model on external validation. Subgroup analyses were performed to explore sources of heterogeneity. From 9151 records retrieved, 44 studies were eligible: 40 on ovarian, three on endometrial, and one on myometrial pathology. Overall, 95% were at high risk of bias - primarily due to inappropriate study inclusion criteria, the absence of a patient-level split of training and testing image sets, and no calibration assessment. For ovarian tumors, the summary AUC for AI models distinguishing benign from malignant tumors was 0.89 (95% CI: 0.85-0.92). In lower-risk studies (at least three low-risk domains), the summary AUC dropped to 0.87 (0.83-0.90), with deep learning models outperforming radiomics-based machine learning approaches in this subset. Only five studies included an external validation, and six evaluated calibration performance. In a recent systematic review of external validation studies, the ADNEX model had a pooled AUC of 0.93 (0.91-0.94) in studies at low risk of bias. Studies on endometrial and myometrial pathologies were reported individually. Although AI models show promising discriminative performances for diagnosing gynecological tumors on ultrasound, most studies have methodological shortcomings that result in a high risk of bias. In addition, the ADNEX model appears to outperform most AI approaches for ovarian tumors. Future research should emphasize robust study designs - ideally large, multicenter, and prospective cohorts that mirror real-world populations - along with external validation, proper calibration, and standardized reporting. This study was pre-registered with Open Science Framework (OSF): https://doi.org/10.17605/osf.io/bhkst.

Robust Computation of Subcortical Functional Connectivity Guided by Quantitative Susceptibility Mapping: An Application in Parkinson's Disease Diagnosis.

Qin J, Wu H, Wu C, Guo T, Zhou C, Duanmu X, Tan S, Wen J, Zheng Q, Yuan W, Zhu Z, Chen J, Wu J, He C, Ma Y, Liu C, Xu X, Guan X, Zhang M

pubmed logopapersMay 8 2025
Previous resting state functional MRI (rs-fMRI) analyses of the basal ganglia in Parkinson's disease heavily relied on T1-weighted imaging (T1WI) atlases. However, subcortical structures are characterized by subtle contrast differences, making their accurate delineation challenging on T1WI. In this study, we aimed to introduce and validate a method that incorporates quantitative susceptibility mapping (QSM) into the rs-fMRI analytical pipeline to achieve precise subcortical nuclei segmentation and improve the stability of RSFC measurements in Parkinson's disease. A total of 321 participants (148 patients with Parkinson's Disease and 173 normal controls) were enrolled. We performed cross-modal registration at the individual level for rs-fMRI to QSM (FUNC2QSM) and T1WI (FUNC2T1), respectively.The consistency and accuracy of resting state functional connectivity (RSFC) measurements in two registration approaches were assessed by intraclass correlation coefficient and mutual information. Bootstrap analysis was performed to validate the stability of the RSFC differences between Parkinson's disease and normal controls. RSFC-based machine learning models were constructed for Parkinson's disease classification, using optimized hyperparameters (RandomizedSearchCV with 5-fold cross-validation). The consistency of RSFC measurements between the two registration methods was poor, whereas the QSM-guided approach showed better mutual information values, suggesting higher registration accuracy. The disruptions of RSFC identified with the QSM-guided approach were more stable and reliable, as confirmed by bootstrap analysis. In classification models, the QSM-guided method consistently outperformed the T1WI-guided method, achieving higher test-set ROC-AUC values (FUNC2QSM: 0.87-0.90, FUNC2T1: 0.67-0.70). The QSM-guided approach effectively enhanced the accuracy of subcortical segmentation and the stability of RSFC measurement, thus facilitating future biomarker development in Parkinson's disease.

A hybrid AI method for lung cancer classification using explainable AI techniques.

Shivwanshi RR, Nirala NS

pubmed logopapersMay 8 2025
The use of Artificial Intelligence (AI) methods for the analysis of CT (computed tomography) images has greatly contributed to the development of an effective computer-assisted diagnosis (CAD) system for lung cancer (LC). However, complex structures, multiple radiographic interrelations, and the dynamic locations of abnormalities within lung CT images make extracting relevant information to process and implement LC CAD systems difficult. These prominent problems are addressed in this paper by presenting a hybrid method of LC malignancy classification, which may help researchers and experts properly engineer the model's performance by observing how the model makes decisions. The proposed methodology is named IncCat-LCC: Explainer (Inception Net Cat Boost LC Classification: Explainer), which consists of feature extraction (FE) using the handcrafted radiomic Feature (HcRdF) extraction technique, InceptionNet CNN Feature (INCF) extraction, Vision Transformer Feature (ViTF) extraction, and XGBOOST (XGB)-based feature selection, and the GPU based CATBOOST (CB) classification technique. The proposed framework achieves better and highest performance scores for lung nodule multiclass malignancy classification when evaluated using metrics such as accuracy, precision, recall, f-1 score, specificity, and area under the roc curve as 96.74 %, 93.68 %, 96.74 %, 95.19 %, 98.47 % and 99.76 % consecutively for classifying highly normal class. Observing the explainable artificial intelligence (XAI) explanations will help readers understand the model performance and the statistical outcomes of the evaluation parameter. The work presented in this article may improve the existing LC CAD system and help assess the important parameters using XAI to recognize the factors contributing to enhanced performance and reliability.

Machine learning model for diagnosing salivary gland adenoid cystic carcinoma based on clinical and ultrasound features.

Su HZ, Li ZY, Hong LC, Wu YH, Zhang F, Zhang ZB, Zhang XD

pubmed logopapersMay 8 2025
To develop and validate machine learning (ML) models for diagnosing salivary gland adenoid cystic carcinoma (ACC) in the salivary glands based on clinical and ultrasound features. A total of 365 patients with ACC or non-ACC of the salivary glands treated at two centers were enrolled in training cohort, internal and external validation cohorts. Synthetic minority oversampling technique was used to address the class imbalance. The least absolute shrinkage and selection operator (LASSO) regression identified optimal features, which were subsequently utilized to construct predictive models employing five ML algorithms. The performance of the models was evaluated across a comprehensive array of learning metrics, prominently the area under the receiver operating characteristic curve (AUC). Through LASSO regression analysis, six key features-sex, pain symptoms, number, cystic areas, rat tail sign, and polar vessel-were identified and subsequently utilized to develop five ML models. Among these models, the support vector machine (SVM) model demonstrated superior performance, achieving the highest AUCs of 0.899 and 0.913, accuracy of 90.54% and 91.53%, and F1 scores of 0.774 and 0.783 in both the internal and external validation cohorts, respectively. Decision curve analysis further revealed that the SVM model offered enhanced clinical utility compared to the other models. The ML model based on clinical and US features provide an accurate and noninvasive method for distinguishing ACC from non-ACC. This machine learning model, constructed based on clinical and ultrasound characteristics, serves as a valuable tool for the identification of salivary gland adenoid cystic carcinoma. Rat tail sign and polar vessel on US predict adenoid cystic carcinoma (ACC). Machine learning models based on clinical and US features can identify ACC. The support vector machine model performed robustly and accurately.

Predicting treatment response to systemic therapy in advanced gallbladder cancer using multiphase enhanced CT images.

Wu J, Zheng Z, Li J, Shen X, Huang B

pubmed logopapersMay 8 2025
Accurate estimation of treatment response can help clinicians identify patients who would potentially benefit from systemic therapy. This study aimed to develop and externally validate a model for predicting treatment response to systemic therapy in advanced gallbladder cancer (GBC). We recruited 399 eligible GBC patients across four institutions. Multivariable logistic regression analysis was performed to identify independent clinical factors related to therapeutic efficacy. This deep learning (DL) radiomics signature was developed for predicting treatment response using multiphase enhanced CT images. Then, the DL radiomic-clinical (DLRSC) model was built by combining the DL signature and significant clinical factors, and its predictive performance was evaluated using area under the curve (AUC). Gradient-weighted class activation mapping analysis was performed to help clinicians better understand the predictive results. Furthermore, patients were stratified into low- and high-score groups by the DLRSC model. The progression-free survival (PFS) and overall survival (OS) between the two different groups were compared. Multivariable analysis revealed that tumor size was a significant predictor of efficacy. The DLRSC model showed great predictive performance, with AUCs of 0.86 (95% CI, 0.82-0.89) and 0.84 (95% CI, 0.80-0.87) in the internal and external test datasets, respectively. This model showed great discrimination, calibration, and clinical utility. Moreover, Kaplan-Meier survival analysis revealed that low-score group patients who were insensitive to systemic therapy predicted by the DLRSC model had worse PFS and OS. The DLRSC model allows for predicting treatment response in advanced GBC patients receiving systemic therapy. The survival benefit provided by the DLRSC model was also assessed. Question No effective tools exist for identifying patients who would potentially benefit from systemic therapy in clinical practice. Findings Our combined model allows for predicting treatment response to systemic therapy in advanced gallbladder cancer. Clinical relevance With the help of this model, clinicians could inform patients of the risk of potential ineffective treatment. Such a strategy can reduce unnecessary adverse events and effectively help reallocate societal healthcare resources.

Construction of risk prediction model of sentinel lymph node metastasis in breast cancer patients based on machine learning algorithm.

Yang Q, Liu C, Wang Y, Dong G, Sun J

pubmed logopapersMay 8 2025
The aim of this study was to develop and validate a machine learning (ML) based prediction model for sentinel lymph node metastasis in breast cancer to identify patients with a high risk of sentinel lymph node metastasis. In this machine learning study, we retrospectively collected 225 female breast cancer patients who underwent sentinel lymph node biopsy (SLNB). Feature screening was performed using the logistic regression analysis. Subsequently, five ML algorithms, namely LOGIT, LASSO, XGBOOST, RANDOM FOREST model and GBM model were employed to train and develop an ML model. In addition, model interpretation was performed by the Shapley Additive Explanations (SHAP) analysis to clarify the importance of each feature of the model and its decision basis. Combined univariate and multivariate logistic regression analysis, identified Multifocal, LVI, Maximum Diameter, Shape US, Maximum Cortical Thickness as significant predictors. We than successfully leveraged machine learning algorithms, particularly the RANDOM FOREST model, to develop a predictive model for sentinel lymph node metastasis in breast cancer. Finally, the SHAP method identified Maximum Diameter and Maximum Cortical Thickness as the primary decision factors influencing the ML model's predictions. With the integration of pathological and imaging characteristics, ML algorithm can accurately predict sentinel lymph node metastasis in breast cancer patients. The RANDOM FOREST model showed ideal performance. With the incorporation of these models in the clinic, can helpful for clinicians to identify patients at risk of sentinel lymph node metastasis of breast cancer and make more reasonable treatment decisions.

Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning.

Bai X, Feng M, Ma W, Wang S

pubmed logopapersMay 8 2025
This study proposes a novel approach to predict the efficacy of bevacizumab (BEV) in treating peritumoral edema in metastatic brain tumor patients by integrating advanced machine learning (ML) techniques with comprehensive imaging and clinical data. A retrospective analysis was performed on 300 patients who received BEV treatment from September 2013 to January 2024. The dataset incorporated 13 predictive features: 8 clinical variables and 5 radiological variables. The dataset was divided into a training set (70%) and a test set (30%) using stratified sampling. Data preprocessing was carried out through methods such as handling missing values with the MICE method, detecting and adjusting outliers, and feature scaling. Four algorithms, namely Random Forest (RF), Logistic Regression, Gradient Boosting Tree, and Naive Bayes, were selected to construct binary classification models. A tenfold cross-validation strategy was implemented during training, and techniques like regularization, hyperparameter optimization, and oversampling were used to mitigate overfitting. The RF model demonstrated superior performance, achieving an accuracy of 0.89, a precision of 0.94, F1-score of 0.92, with both AUC-ROC and AUC-PR values reaching 0.91. Feature importance analysis consistently identified edema volume as the most significant predictor, followed by edema index, patient age, and tumor volume. Traditional multivariate logistic regression corroborated these findings, confirming that edema volume and edema index were independent predictors (p < 0.01). Our results highlight the potential of ML-driven predictive models in optimizing BEV treatment selection, reducing unnecessary treatment risks, and improving clinical decision-making in neuro-oncology.

Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management.

Chilaca-Rosas MF, Contreras-Aguilar MT, Pallach-Loose F, Altamirano-Bustamante NF, Salazar-Calderon DR, Revilla-Monsalve C, Heredia-Gutiérrez JC, Conde-Castro B, Medrano-Guzmán R, Altamirano-Bustamante MM

pubmed logopapersMay 8 2025
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.

Effective data selection via deep learning processes and corresponding learning strategies in ultrasound image classification.

Lee H, Kwak JY, Lee E

pubmed logopapersMay 8 2025
In this study, we propose a novel approach to enhancing transfer learning by optimizing data selection through deep learning techniques and corresponding innovative learning strategies. This method is particularly beneficial when the available dataset has reached its limit and cannot be further expanded. Our approach focuses on maximizing the use of existing data to improve learning outcomes which offers an effective solution for data-limited applications in medical imaging classification. The proposed method consists of two stages. In the first stage, an original network performs the initial classification. When the original network exhibits low confidence in its predictions, ambiguous classifications are passed to a secondary decision-making step involving a newly trained network, referred to as the True network. The True network shares the same architecture as the original network but is trained on a subset of the original dataset that is selected based on consensus among multiple independent networks. It is then used to verify the classification results of the original network, identifying and correcting any misclassified images. To evaluate the effectiveness of our approach, we conducted experiments using thyroid nodule ultrasound images with the ResNet101 and Vision Transformer architectures along with eleven other pre-trained neural networks. The proposed method led to performance improvements across all five key metrics, accuracy, sensitivity, specificity, F1-score, and AUC, compared to using only the original or True networks in ResNet101. Additionally, the True network showed strong performance when applied to the Vision Transformer and similar enhancements were observed across multiple convolutional neural network architectures. Furthermore, to assess the robustness and adaptability of our method across different medical imaging modalities, we applied it to dermoscopic images and observed similar performance enhancements. These results provide evidence of the effectiveness of our approach in improving transfer learning-based medical image classification without requiring additional training data.

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Yan Y, Liu Y, Wang Y, Jiang T, Xie J, Zhou Y, Liu X, Yan M, Zheng Q, Xu H, Chen J, Sui L, Chen C, Ru R, Wang K, Zhao A, Li S, Zhu Y, Zhang Y, Wang VY, Xu D

pubmed logopapersMay 8 2025
Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical Diagnosis Model (PTs-HDM) for preoperative identification and grading. Ultrasound images from five hospitals were retrospectively collected, with all patients having undergone surgical pathological confirmation of either PTs or fibroadenomas (FAs). PTs-HDM follows a two-stage classification: first distinguishing PTs from FAs, then grading PTs into benign or borderline/malignant. Model performance metrics including AUC and accuracy were quantitatively evaluated. A comparative analysis was conducted between the algorithm's diagnostic capabilities and those of radiologists with varying clinical experience within an external validation cohort. Through the provision of PTs-HDM's automated classification outputs and associated thermal activation mapping guidance, we systematically assessed the enhancement in radiologists' diagnostic concordance and classification accuracy. A total of 712 patients were included. On the external test set, PTs-HDM achieved an AUC of 0.883, accuracy of 87.3% for PT vs. FA classification. Subgroup analysis showed high accuracy for tumors < 2 cm (90.9%). In hierarchical classification, the model obtained an AUC of 0.856 and accuracy of 80.9%. Radiologists' performance improved with PTs-HDM assistance, with binary classification accuracy increasing from 82.7%, 67.7%, and 64.2-87.6%, 76.6%, and 82.1% for senior, attending, and resident radiologists, respectively. Their hierarchical classification AUCs improved from 0.566 to 0.827 to 0.725-0.837. PTs-HDM also enhanced inter-radiologist consistency, increasing Kappa values from - 0.05 to 0.41 to 0.12 to 0.65, and the intraclass correlation coefficient from 0.19 to 0.45. PTs-HDM shows strong diagnostic performance, especially for small lesions, and improves radiologists' accuracy across all experience levels, bridging diagnostic gaps and providing reliable support for PTs' hierarchical diagnosis.
Page 171 of 1781774 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.