Default Mode Network Connectivity Predicts Individual Differences in Long-Term Forgetting: Evidence for Storage Degradation, not Retrieval Failure

Authors

Xu, Y.,Prat, C. S.,Sense, F.,van Rijn, H.,Stocco, A.

Affiliations (1)

  • University of Washington

Abstract

Despite the importance of memories in everyday life and the progress made in understanding how they are encoded and retrieved, the neural processes by which declarative memories are maintained or forgotten remain elusive. Part of the problem is that it is empirically difficult to measure the rate at which memories fade, even between repeated presentations of the source of the memory. Without such a ground-truth measure, it is hard to identify the corresponding neural correlates. This study addresses this problem by comparing individual patterns of functional connectivity against behavioral differences in forgetting speed derived from computational phenotyping. Specifically, the individual-specific values of the speed of forgetting in long-term memory (LTM) were estimated for 33 participants using a formal model fit to accuracy and response time data from an adaptive paired-associate learning task. Individual speeds of forgetting were then used to examine participant-specific patterns of resting-state fMRI connectivity, using machine learning techniques to identify the most predictive and generalizable features. Our results show that individual speeds of forgetting are associated with resting-state connectivity within the default mode network (DMN) as well as between the DMN and cortical sensory areas. Cross-validation showed that individual speeds of forgetting were predicted with high accuracy (r = .78) from these connectivity patterns alone. These results support the view that DMN activity and the associated sensory regions are actively involved in maintaining memories and preventing their decline, a view that can be seen as evidence for the hypothesis that forgetting is a result of storage degradation, rather than of retrieval failure.

Topics

neuroscience

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.