Sort by:
Page 17 of 46453 results

Evaluating the impact of view position in X-ray imaging for the classification of lung diseases.

Hage Chehade A, Abdallah N, Marion JM, Oueidat M, Chauvet P

pubmed logopapersJul 28 2025
Clinical information associated with chest X-ray images, such as view position, patient age and gender, plays a crucial role in image interpretation, as it influences the visibility of anatomical structures and pathologies. However, most classification models using the ChestX-ray14 dataset relied solely on image data, disregarding the impact of these clinical variables. This study aims to investigate which clinical variable affects image characteristics and assess its impact on classification performance. To explore the relationships between clinical variables and image characteristics, unsupervised clustering was applied to group images based on their similarities. Afterwards, a statistical analysis was then conducted on each cluster to examine their clinical composition, by analyzing the distribution of age, gender, and view position. An attention-based CNN model was developed separately for each value of the clinical variable with the greatest influence on image characteristics to assess its impact on lung disease classification. The analysis identified view position as the most influential variable affecting image characteristics. Accounting for this, the proposed approach achieved a weighted area under the curve (AUC) of 0.8176 for pneumonia classification, surpassing the base model (without considering view position) by 1.65% and outperforming previous studies by 6.76%. Furthermore, it demonstrated improved performance across all 14 diseases in the ChestX-ray14 dataset. The findings highlight the importance of considering view position when developing classification models for chest X-ray analysis. Accounting for this characteristic allows for more precise disease identification, demonstrating potential for broader clinical application in lung disease evaluation.

SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection

Rui Pan, Ruiying Lu

arxiv logopreprintJul 25 2025
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

Counterfactual Explanations in Medical Imaging: Exploring SPN-Guided Latent Space Manipulation

Julia Siekiera, Stefan Kramer

arxiv logopreprintJul 25 2025
Artificial intelligence is increasingly leveraged across various domains to automate decision-making processes that significantly impact human lives. In medical image analysis, deep learning models have demonstrated remarkable performance. However, their inherent complexity makes them black box systems, raising concerns about reliability and interpretability. Counterfactual explanations provide comprehensible insights into decision processes by presenting hypothetical "what-if" scenarios that alter model classifications. By examining input alterations, counterfactual explanations provide patterns that influence the decision-making process. Despite their potential, generating plausible counterfactuals that adhere to similarity constraints providing human-interpretable explanations remains a challenge. In this paper, we investigate this challenge by a model-specific optimization approach. While deep generative models such as variational autoencoders (VAEs) exhibit significant generative power, probabilistic models like sum-product networks (SPNs) efficiently represent complex joint probability distributions. By modeling the likelihood of a semi-supervised VAE's latent space with an SPN, we leverage its dual role as both a latent space descriptor and a classifier for a given discrimination task. This formulation enables the optimization of latent space counterfactuals that are both close to the original data distribution and aligned with the target class distribution. We conduct experimental evaluation on the cheXpert dataset. To evaluate the effectiveness of the integration of SPNs, our SPN-guided latent space manipulation is compared against a neural network baseline. Additionally, the trade-off between latent variable regularization and counterfactual quality is analyzed.

PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection

Xiaocheng Fang, Jieyi Cai, Huanyu Liu, Chengju Zhou, Minhua Lu, Bingzhi Chen

arxiv logopreprintJul 25 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.

XVertNet: Unsupervised Contrast Enhancement of Vertebral Structures with Dynamic Self-Tuning Guidance and Multi-Stage Analysis.

Eidlin E, Hoogi A, Rozen H, Badarne M, Netanyahu NS

pubmed logopapersJul 25 2025
Chest X-ray is one of the main diagnostic tools in emergency medicine, yet its limited ability to capture fine anatomical details can result in missed or delayed diagnoses. To address this, we introduce XVertNet, a novel deep-learning framework designed to enhance vertebral structure visualization in X-ray images significantly. Our framework introduces two key innovations: (1) an unsupervised learning architecture that eliminates reliance on manually labeled training data-a persistent bottleneck in medical imaging, and (2) a dynamic self-tuned internal guidance mechanism featuring an adaptive feedback loop for real-time image optimization. Extensive validation across four major public datasets revealed that XVertNet outperforms state-of-the-art enhancement methods, as demonstrated by improvements in evaluation measures such as entropy, the Tenengrad criterion, LPC-SI, TMQI, and PIQE. Furthermore, clinical validation conducted by two board-certified clinicians confirmed that the enhanced images enabled more sensitive examination of vertebral structural changes. The unsupervised nature of XVertNet facilitates immediate clinical deployment without requiring additional training overhead. This innovation represents a transformative advancement in emergency radiology, providing a scalable and time-efficient solution to enhance diagnostic accuracy in high-pressure clinical environments.

A Lightweight Hybrid DL Model for Multi-Class Chest X-ray Classification for Pulmonary Diseases.

Precious JG, S R, B SP, R R V, M SSM, Sapthagirivasan V

pubmed logopapersJul 24 2025
Pulmonary diseases have become one of the main reasons for people's health decline, impacting millions of people worldwide. Rapid advancement of deep learning has significantly impacted medical image analysis by improving diagnostic accuracy and efficiency. Timely and precise diagnosis of these diseases proves to be invaluable for effective treatment procedures. Chest X-rays (CXR) perform a pivotal role in diagnosing various respiratory diseases by offering valuable insights into the chest and lung regions. This study puts forth a hybrid approach for classifying CXR images into four classes namely COVID-19, tuberculosis, pneumonia, and normal (healthy) cases. The presented method integrates a machine learning method, Support Vector Machine (SVM), with a pre-trained deep learning model for improved classification accuracy and reduced training time. Data from a number of public sources was used in this study, which represents a wide range of demographics. Class weights were implemented during training to balance the contribution of each class in order to address the class imbalance. Several pre-trained architectures, namely DenseNet, MobileNet, EfficientNetB0, and EfficientNetB3, have been investigated, and their performance was evaluated. Since MobileNet achieved the best classification accuracy of 94%, it was opted for the hybrid model, which combines MobileNet with SVM classifier, increasing the accuracy to 97%. The results suggest that this approach is reliable and holds great promise for clinical applications.&#xD.

Disease probability-enhanced follow-up chest X-ray radiology report summary generation.

Wang Z, Deng Q, So TY, Chiu WH, Lee K, Hui ES

pubmed logopapersJul 24 2025
A chest X-ray radiology report describes abnormal findings not only from X-ray obtained at a given examination, but also findings on disease progression or change in device placement with reference to the X-ray from previous examination. Majority of the efforts on automatic generation of radiology report pertain to reporting the former, but not the latter, type of findings. To the best of the authors' knowledge, there is only one work dedicated to generating summary of the latter findings, i.e., follow-up radiology report summary. In this study, we propose a transformer-based framework to tackle this task. Motivated by our observations on the significance of medical lexicon on the fidelity of report summary generation, we introduce two mechanisms to bestow clinical insight to our model, namely disease probability soft guidance and masked entity modeling loss. The former mechanism employs a pretrained abnormality classifier to guide the presence level of specific abnormalities, while the latter directs the model's attention toward medical lexicon. Extensive experiments were conducted to demonstrate that the performance of our model exceeded the state-of-the-art.

Analyzing pediatric forearm X-rays for fracture analysis using machine learning.

Lam V, Parida A, Dance S, Tabaie S, Cleary K, Anwar SM

pubmed logopapersJul 24 2025
Forearm fractures constitute a significant proportion of emergency department presentations in pediatric population. The treatment goal is to restore length and alignment between the distal and proximal bone fragments. While immobilization through splinting or casting is enough for non-displaced and minimally displaced fractures. However, moderately or severely displaced fractures often require reduction for realignment. However, appropriate treatment in current practices has challenges due to the lack of resources required for specialized pediatric care leading to delayed and unnecessary transfers between medical centers, which potentially create treatment complications and burdens. The purpose of this study is to build a machine learning model for analyzing forearm fractures to assist clinical centers that lack surgical expertise in pediatric orthopedics. X-ray scans from 1250 children were curated, preprocessed, and manually annotated at our clinical center. Several machine learning models were fine-tuned using a pretraining strategy leveraging self-supervised learning model with vision transformer backbone. We further employed strategies to identify the most important region related to fractures within the forearm X-ray. The model performance was evaluated with and without region of interest (ROI) detection to find an optimal model for forearm fracture analyses. Our proposed strategy leverages self-supervised pretraining (without labels) followed by supervised fine-tuning (with labels). The fine-tuned model using regions cropped with ROI identification resulted in the highest classification performance with a true-positive rate (TPR) of 0.79, true-negative rate (TNR) of 0.74, AUROC of 0.81, and AUPR of 0.86 when evaluated on the testing data. The results showed the feasibility of using machine learning models in predicting the appropriate treatment for forearm fractures in pediatric cases. With further improvement, the algorithm could potentially be used as a tool to assist non-specialized orthopedic providers in diagnosing and providing treatment.

Enhancing InceptionResNet to Diagnose COVID-19 from Medical Images.

Aljawarneh S, Ray I

pubmed logopapersJul 24 2025
This investigation delves into the diagnosis of COVID-19, using X-ray images generated by way of an effective deep learning model. In terms of assessing the COVID-19 diagnosis learning model, the methods currently employed tend to focus on the accuracy rate level, while neglecting several significant assessment parameters. These parameters, which include precision, sensitivity and specificity, significantly, F1-score, and ROC-AUC influence the performance level of the model. In this paper, we have improved the InceptionResNet and called Enhanced InceptionResNet with restructured parameters termed, "Enhanced InceptionResNet," which incorporates depth-wise separable convolutions to enhance the efficiency of feature extraction and minimize the consumption of computational resources. For this investigation, three residual network (ResNet) models, namely Res- Net, InceptionResNet model, and the Enhanced InceptionResNet with restructured parameters, were employed for a medical image classification assignment. The performance of each model was evaluated on a balanced dataset of 2600 X-ray images. The models were subsequently assessed for accuracy and loss, as well subjected to a confusion matrix analysis. The Enhanced InceptionResNet consistently outperformed ResNet and InceptionResNet in terms of validation and testing accuracy, recall, precision, F1-score, and ROC-AUC demonstrating its superior capacity for identifying pertinent information in the data. In the context of validation and testing accuracy, our Enhanced InceptionRes- Net repeatedly proved to be more reliable than ResNet, an indication of the former's capacity for the efficient identification of pertinent information in the data (99.0% and 98.35%, respectively), suggesting enhanced feature extraction capabilities. The Enhanced InceptionResNet excelled in COVID-19 diagnosis from chest X-rays, surpassing ResNet and Default InceptionResNet in accuracy, precision, and sensitivity. Despite computational demands, it shows promise for medical image classification. Future work should leverage larger datasets, cloud platforms, and hyperparameter optimisation to improve performance, especially for distinguishing normal and pneumonia cases.

Real-time Monitoring of Urinary Stone Status During Shockwave Lithotripsy.

Noble PA

pubmed logopapersJul 24 2025
To develop a standardized, real-time feedback system for monitoring urinary stone fragmentation during shockwave lithotripsy (SWL), thereby optimizing treatment efficacy and minimizing patient risk. A two-pronged approach was implemented to quantify stone fragmentation in C-arm X-ray images. First, the initial pre-treatment stone image was compared to subsequent images to measure stone area loss. Second, a Convolutional Neural Network (CNN) was trained to estimate the probability that an image contains a urinary stone. These two criteria were integrated to create a real-time signaling system capable of evaluating shockwave efficacy during SWL. The system was developed using data from 522 shockwave treatments encompassing 4,057 C-arm X-ray images. The combined area-loss metric and CNN output enabled consistent real-time assessment of stone fragmentation, providing actionable feedback to guide SWL in diverse clinical contexts. The proposed system offers a novel and reliable method for monitoring of urinary stone fragmentation during SWL. By helping to balance treatment efficacy with patient safety, it holds significant promise for semi-automated SWL platforms, particularly in resource-limited or remote environments such as arid regions and extended space missions.
Page 17 of 46453 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.