Multi-scale geometric transformer for sparse-view X-ray 3D foot reconstruction.

Authors

Wang W,An L,Han G

Affiliations (2)

  • Department of Orthopedic Surgery, Yuzhou City People's Hospital, Yuzhou, China.
  • School of Information Science and Technology, Northwest University, Xian China.

Abstract

Sparse-View X-ray 3D Foot Reconstruction aims to reconstruct the three-dimensional structure of the foot from sparse-view X-ray images, a challenging task due to data sparsity and limited viewpoints. This paper presents a novel method using a multi-scale geometric Transformer to enhance reconstruction accuracy and detail representation. Geometric position encoding technology and a window mechanism are introduced to divide X-ray images into local areas, finely capturing local features. A multi-scale Transformer module based on Neural Radiance Fields (NeRF) enhances the model's ability to express and capture details in complex structures. An adaptive weight learning strategy further optimizes the Transformer's feature extraction and long-range dependency modelling. Experimental results demonstrate that the proposed method significantly improves the reconstruction accuracy and detail preservation of the foot structure under sparse-view X-ray conditions. The multi-scale geometric Transformer effectively captures local and global features, leading to more accurate and detailed 3D reconstructions. The proposed method advances medical image reconstruction, significantly improving the accuracy and detail preservation of 3D foot reconstructions from sparse-view X-ray images.

Topics

Imaging, Three-DimensionalFootTomography, X-Ray ComputedJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.