Sort by:
Page 168 of 2442432 results

Automated Multi-grade Brain Tumor Classification Using Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network in MRI Images.

Thanya T, Jeslin T

pubmed logopapersJun 18 2025
Brain tumor classification using Magnetic Resonance Imaging (MRI) images is an important and emerging field of medical imaging and artificial intelligence in the current world. With advancements in technology, particularly in deep learning and machine learning, researchers and clinicians are leveraging these tools to create complex models that, using MRI data, can reliably detect and classify tumors in the brain. However, it has a number of drawbacks, including the intricacy of tumor types and grades, intensity variations in MRI data and tumors varying in severity. This paper proposes a Multi-Grade Hierarchical Classification Network Model (MGHCN) for the hierarchical classification of tumor grades in MRI images. The model's distinctive feature lies in its ability to categorize tumors into multiple grades, thereby capturing the hierarchical nature of tumor severity. To address variations in intensity levels across different MRI samples, an Improved Adaptive Intensity Normalization (IAIN) pre-processing step is employed. This step standardizes intensity values, effectively mitigating the impact of intensity variations and ensuring more consistent analyses. The model renders utilization of the Dual Tree Complex Wavelet Transform with Enhanced Trigonometric Features (DTCWT-ETF) for efficient feature extraction. DTCWT-ETF captures both spatial and frequency characteristics, allowing the model to distinguish between different tumor types more effectively. In the classification stage, the framework introduces the Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network (AHOHH-BiLSTM). This multi-grade classification model is designed with a comprehensive architecture, including distinct layers that enhance the learning process and adaptively refine parameters. The purpose of this study is to improve the precision of distinguishing different grades of tumors in MRI images. To evaluate the proposed MGHCN framework, a set of evaluation metrics is incorporated which includes precision, recall, and the F1-score. The structure employs BraTS Challenge 2021, Br35H, and BraTS Challenge 2023 datasets, a significant combination that ensures comprehensive training and evaluation. The MGHCN framework aims to enhance brain tumor classification in MRI images by utilizing these datasets along with a comprehensive set of evaluation metrics, providing a more thorough and sophisticated understanding of its capabilities and performance.

Quality appraisal of radiomics-based studies on chondrosarcoma using METhodological RadiomICs Score (METRICS) and Radiomics Quality Score (RQS).

Gitto S, Cuocolo R, Klontzas ME, Albano D, Messina C, Sconfienza LM

pubmed logopapersJun 18 2025
To assess the methodological quality of radiomics-based studies on bone chondrosarcoma using METhodological RadiomICs Score (METRICS) and Radiomics Quality Score (RQS). A literature search was conducted on EMBASE and PubMed databases for research papers published up to July 2024 and focused on radiomics in bone chondrosarcoma, with no restrictions regarding the study aim. Three readers independently evaluated the study quality using METRICS and RQS. Baseline study characteristics were extracted. Inter-reader reliability was calculated using intraclass correlation coefficient (ICC). Out of 68 identified papers, 18 were finally included in the analysis. Radiomics research was aimed at lesion classification (n = 15), outcome prediction (n = 2) or both (n = 1). Study design was retrospective in all papers. Most studies employed MRI (n = 12), CT (n = 3) or both (n = 1). METRICS and RQS adherence rates ranged between 37.3-94.8% and 2.8-44.4%, respectively. Excellent inter-reader reliability was found for both METRICS (ICC = 0.961) and RQS (ICC = 0.975). Among the limitations of the evaluated studies, the absence of prospective studies and deep learning-based analyses was highlighted, along with the limited adherence to radiomics guidelines, use of external testing datasets and open science data. METRICS and RQS are reproducible quality assessment tools, with the former showing higher adherence rates in studies on chondrosarcoma. METRICS is better suited for assessing papers with retrospective design, which is often chosen in musculoskeletal oncology due to the low prevalence of bone sarcomas. Employing quality scoring systems should be promoted in radiomics-based studies to improve methodological quality and facilitate clinical translation. Employing reproducible quality scoring systems, especially METRICS (which shows higher adherence rates than RQS and is better suited for assessing retrospective investigations), is highly recommended to design radiomics-based studies on chondrosarcoma, improve methodological quality and facilitate clinical translation. The low scientific and reporting quality of radiomics studies on chondrosarcoma is the main reason preventing clinical translation. Quality appraisal using METRICS and RQS showed 37.3-94.8% and 2.8-44.4% adherence rates, respectively. Room for improvement was noted in study design, deep learning methods, external testing and open science. Employing reproducible quality scoring systems is recommended to design radiomics studies on bone chondrosarcoma and facilitate clinical translation.

Comparative analysis of transformer-based deep learning models for glioma and meningioma classification.

Nalentzi K, Gerogiannis K, Bougias H, Stogiannos N, Papavasileiou P

pubmed logopapersJun 18 2025
This study compares the classification accuracy of novel transformer-based deep learning models (ViT and BEiT) on brain MRIs of gliomas and meningiomas through a feature-driven approach. Meta's Segment Anything Model was used for semi-automatic segmentation, therefore proposing a total neural network-based workflow for this classification task. ViT and BEiT models were finetuned to a publicly available brain MRI dataset. Gliomas/meningiomas cases (625/507) were used for training and 520 cases (260/260; gliomas/meningiomas) for testing. The extracted deep radiomic features from ViT and BEiT underwent normalization, dimensionality reduction based on the Pearson correlation coefficient (PCC), and feature selection using analysis of variance (ANOVA). A multi-layer perceptron (MLP) with 1 hidden layer, 100 units, rectified linear unit activation, and Adam optimizer was utilized. Hyperparameter tuning was performed via 5-fold cross-validation. The ViT model achieved the highest AUC on the validation dataset using 7 features, yielding an AUC of 0.985 and accuracy of 0.952. On the independent testing dataset, the model exhibited an AUC of 0.962 and an accuracy of 0.904. The BEiT model yielded an AUC of 0.939 and an accuracy of 0.871 on the testing dataset. This study demonstrates the effectiveness of transformer-based models, especially ViT, for glioma and meningioma classification, achieving high AUC scores and accuracy. However, the study is limited by the use of a single dataset, which may affect generalizability. Future work should focus on expanding datasets and further optimizing models to improve performance and applicability across different institutions. This study introduces a feature-driven methodology for glioma and meningioma classification, showcasing advancements in the accuracy and model robustness of transformer-based models.

USING ARTIFICIAL INTELLIGENCE TO PREDICT TREATMENT OUTCOMES IN PATIENTS WITH NEUROGENIC OVERACTIVE BLADDER AND MULTIPLE SCLEROSIS

Chang, O., Lee, J., Lane, F., Demetriou, M., Chang, P.

medrxiv logopreprintJun 18 2025
Introduction and ObjectivesMany women with multiple sclerosis (MS) experience neurogenic overactive bladder (NOAB) characterized by urinary frequency, urinary urgency and urgency incontinence. The objective of the study was to create machine learning (ML) models utilizing clinical and imaging data to predict NOAB treatment success stratified by treatment type. MethodsThis was a retrospective cohort study of female patients with diagnosis of NOAB and MS seen at a tertiary academic center from 2017-2022. Clinical and imaging data were extracted. Three types of NOAB treatment options evaluated included behavioral therapy, medication therapy and minimally invasive therapies. The primary outcome - treatment success was defined as > 50% reduction in urinary frequency, urinary urgency or a subjective perception of treatment success. For the construction of the logistic regression ML models, bivariate analyses were performed with backward selection of variables with p-values of < 0.10 and clinically relevant variables applied. For ML, the cohort was split into a training dataset (70%) and a test dataset (30%). Area under the curve (AUC) scores are calculated to evaluate model performance. ResultsThe 110 patients included had a mean age of patients were 59 years old (SD 14 years), with a predominantly White cohort (91.8%), post-menopausal (68.2%). Patients were stratified by NOAB treatment therapy type received with 70 patients (63.6%) at behavioral therapy, 58 (52.7%) with medication therapy and 44 (40%) with minimally invasive therapies. On MRI brain imaging, 63.6% of patients had > 20 lesions though majority were not active lesions. The lesions were mostly located within the supratentorial (94.5%), infratentorial (68.2%) and 58.2 infratentorial brain (63.8%) as well as in the deep white matter (53.4%). For MRI spine imaging, most of the lesions were in the cervical spine (71.8%) followed by thoracic spine (43.7%) and lumbar spine (6.4%).10.3%). After feature selection, the top 10 highest ranking features were used to train complimentary LASSO-regularized logistic regression (LR) and extreme gradient-boosted tree (XGB) models. The top-performing LR models for predicting response to behavioral, medication, and minimally invasive therapies yielded AUC values of 0.74, 0.76, and 0.83, respectively. ConclusionsUsing these top-ranked features, LR models achieved AUC values of 0.74-0.83 for prediction of treatment success based on individual factors. Further prospective evaluation is needed to better characterize and validate these identified associations.

EchoFM: Foundation Model for Generalizable Echocardiogram Analysis.

Kim S, Jin P, Song S, Chen C, Li Y, Ren H, Li X, Liu T, Li Q

pubmed logopapersJun 18 2025
Echocardiography is the first-line noninvasive cardiac imaging modality, providing rich spatio-temporal information on cardiac anatomy and physiology. Recently, foundation model trained on extensive and diverse datasets has shown strong performance in various downstream tasks. However, translating foundation models into the medical imaging domain remains challenging due to domain differences between medical and natural images, the lack of diverse patient and disease datasets. In this paper, we introduce EchoFM, a general-purpose vision foundation model for echocardiography trained on a large-scale dataset of over 20 million echocardiographic images from 6,500 patients. To enable effective learning of rich spatio-temporal representations from periodic videos, we propose a novel self-supervised learning framework based on a masked autoencoder with a spatio-temporal consistent masking strategy and periodic-driven contrastive learning. The learned cardiac representations can be readily adapted and fine-tuned for a wide range of downstream tasks, serving as a strong and flexible backbone model. We validate EchoFM through experiments across key downstream tasks in the clinical echocardiography workflow, leveraging public and multi-center internal datasets. EchoFM consistently outperforms SOTA methods, demonstrating superior generalization capabilities and flexibility. The code and checkpoints are available at: https://github.com/SekeunKim/EchoFM.git.

Quality control system for patient positioning and filling in meta-information for chest X-ray examinations.

Borisov AA, Semenov SS, Kirpichev YS, Arzamasov KM, Omelyanskaya OV, Vladzymyrskyy AV, Vasilev YA

pubmed logopapersJun 18 2025
During radiography, irregularities occur, leading to decrease in the diagnostic value of the images obtained. The purpose of this work was to develop a system for automated quality assurance of patient positioning in chest radiographs, with detection of suboptimal contrast, brightness, and metadata errors. The quality assurance system was trained and tested using more than 69,000 X-rays of the chest and other anatomical areas from the Unified Radiological Information Service (URIS) and several open datasets. Our dataset included studies regardless of a patient's gender and race, while the sole exclusion criterion being age below 18 years. A training dataset of radiographs labeled by expert radiologists was used to train an ensemble of modified deep convolutional neural networks architectures ResNet152V2 and VGG19 to identify various quality deficiencies. Model performance was accessed using area under the receiver operating characteristic curve (ROC-AUC), precision, recall, F1-score, and accuracy metrics. Seven neural network models were trained to classify radiographs by the following quality deficiencies: failure to capture the target anatomic region, chest rotation, suboptimal brightness, incorrect anatomical area, projection errors, and improper photometric interpretation. All metrics for each model exceed 95%, indicating high predictive value. All models were combined into a unified system for evaluating radiograph quality. The processing time per image is approximately 3 s. The system supports multiple use cases: integration into an automated radiographic workstations, external quality assurance system for radiology departments, acquisition quality audits for municipal health systems, and routing of studies to diagnostic AI models.

Sex, stature, and age estimation from skull using computed tomography images: Current status, challenges, and future perspectives.

Du Z, Navic P, Mahakkanukrauh P

pubmed logopapersJun 18 2025
The skull has long been recognized and utilized in forensic investigations, evolving from basic to complex analyses with modern technologies. Advances in radiology and technology have enhanced the ability to analyze biological identifiers-sex, stature, and age at death-from the skull. The use of computed tomography imaging helps practitioners to improve the accuracy and reliability of forensic analyses. Recently, artificial intelligence has increasingly been applied in digital forensic investigations to estimate sex, stature, and age from computed tomography images. The integration of artificial intelligence represents a significant shift in multidisciplinary collaboration, offering the potential for more accurate and reliable identification, along with advancements in academia. However, it is not yet fully developed for routine forensic work, as it remains largely in the research and development phase. Additionally, the limitations of artificial intelligence systems, such as the lack of transparency in algorithms, accountability for errors, and the potential for discrimination, must still be carefully considered. Based on scientific publications from the past decade, this article aims to provide an overview of the application of computed tomography imaging in estimating sex, stature, and age from the skull and to address issues related to future directions to further improvement.

Deep learning model using CT images for longitudinal prediction of benign and malignant ground-glass nodules.

Yang X, Wang J, Wang P, Li Y, Wen Z, Shang J, Chen K, Tang C, Liang S, Meng W

pubmed logopapersJun 18 2025
To develop and validate a CT image-based multiple time-series deep learning model for the longitudinal prediction of benign and malignant pulmonary ground-glass nodules (GGNs). A total of 486 GGNs from an equal number of patients were included in this research, which took place at two medical centers. Each nodule underwent surgical removal and was confirmed pathologically. The patients were randomly assigned to a training set, validation set, and test set, following a distribution ratio of 7:2:1. We established a transformer-based deep learning framework that leverages multi-temporal CT images for the longitudinal prediction of GGNs, focusing on distinguishing between benign and malignant types. Additionally, we utilized 13 different machine learning algorithms to formulate clinical models, delta-radiomics models, and combined models that merge deep learning with CT semantic features. The predictive capabilities of the models were assessed using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The multiple time-series deep learning model based on CT images surpassed both the clinical model and the delta-radiomics model, showcasing strong predictive capabilities for GGNs across the training, validation, and test sets, with AUCs of 0.911 (95% CI, 0.879-0.939), 0.809 (95% CI,0.715-0.908), and 0.817 (95% CI,0.680-0.937), respectively. Furthermore, the models that integrated deep learning with CT semantic features achieved the highest performance, resulting in AUCs of 0.960 (95% CI, 0.912-0.977), 0.878 (95% CI,0.801-0.942), and 0.890(95% CI, 0.790-0.968). The multiple time-series deep learning model utilizing CT images was effective in predicting benign and malignant GGNs.

Identification, characterisation and outcomes of pre-atrial fibrillation in heart failure with reduced ejection fraction.

Helbitz A, Nadarajah R, Mu L, Larvin H, Ismail H, Wahab A, Thompson P, Harrison P, Harris M, Joseph T, Plein S, Petrie M, Metra M, Wu J, Swoboda P, Gale CP

pubmed logopapersJun 18 2025
Atrial fibrillation (AF) in heart failure with reduced ejection fraction (HFrEF) has prognostic implications. Using a machine learning algorithm (FIND-AF), we aimed to explore clinical events and the cardiac magnetic resonance (CMR) characteristics of the pre-AF phenotype in HFrEF. A cohort of individuals aged ≥18 years with HFrEF without AF from the MATCH 1 and MATCH 2 studies (2018-2024) stratified by FIND-AF score. All received cardiac magnetic resonance using Cvi42 software for volumetric and T1/T2. The primary outcome was time to a composite of MACE inclusive of heart failure hospitalisation, myocardial infarction, stroke and all-cause mortality. Secondary outcomes included the association between CMR findings and FIND-AF score. Of 385 patients [mean age 61.7 (12.6) years, 39.0% women] with a median 2.5 years follow-up, the primary outcome occurred in 58 (30.2%) patients in the high FIND-AF risk group and 23 (11.9%) in the low FIND-AF risk group (hazard ratio 3.25, 95% CI 2.00-5.28, P < 0.001). Higher FIND-AF score was associated with higher indexed left ventricular mass (β = 4.7, 95% CI 0.5-8.9), indexed left atrial volume (β = 5.9, 95% CI 2.2-9.6), higher indexed left ventricular end-diastolic volume (β = 9.55, 95% CI 1.37-17.74, P = 0.022), native T1 signal (β = 18.0, 95% CI 7.0-29.1) and extracellular volume (β = 1.6, 95% CI 0.6-2.5). A pre-AF HFrEF subgroup with distinct CMR characteristics and poor prognosis may be identified, potentially guiding interventions to reduce clinical events.

Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading

Zhe Wang, Yuhua Ru, Aladine Chetouani, Tina Shiang, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane, William Ewing Palmer, Mohamed Jarraya, Yung Hsin Chen

arxiv logopreprintJun 18 2025
Automated grading of Knee Osteoarthritis (KOA) from radiographs is challenged by significant inter-observer variability and the limited robustness of deep learning models, particularly near critical decision boundaries. To address these limitations, this paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability by generating targeted counterfactual examples. The method navigates the latent space of a diffusion model using a Stochastic Differential Equation (SDE), governed by balancing a classifier-informed boundary drive with a manifold constraint. The resulting counterfactuals are then used within a self-corrective learning strategy to improve the classifier by focusing on its specific areas of uncertainty. Extensive experiments on the public Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) datasets demonstrate that this approach significantly improves classification accuracy across multiple model architectures. Furthermore, the method provides interpretability by visualizing minimal pathological changes and revealing that the learned latent space topology aligns with clinical knowledge of KOA progression. The DCA framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems. Our code is available at https://github.com/ZWang78/DCA.
Page 168 of 2442432 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.