Sort by:
Page 165 of 2442432 results

Training-free Test-time Improvement for Explainable Medical Image Classification

Hangzhou He, Jiachen Tang, Lei Zhu, Kaiwen Li, Yanye Lu

arxiv logopreprintJun 22 2025
Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.

Decoding Federated Learning: The FedNAM+ Conformal Revolution

Sree Bhargavi Balija, Amitash Nanda, Debashis Sahoo

arxiv logopreprintJun 22 2025
Federated learning has significantly advanced distributed training of machine learning models across decentralized data sources. However, existing frameworks often lack comprehensive solutions that combine uncertainty quantification, interpretability, and robustness. To address this, we propose FedNAM+, a federated learning framework that integrates Neural Additive Models (NAMs) with a novel conformal prediction method to enable interpretable and reliable uncertainty estimation. Our method introduces a dynamic level adjustment technique that utilizes gradient-based sensitivity maps to identify key input features influencing predictions. This facilitates both interpretability and pixel-wise uncertainty estimates. Unlike traditional interpretability methods such as LIME and SHAP, which do not provide confidence intervals, FedNAM+ offers visual insights into prediction reliability. We validate our approach through experiments on CT scan, MNIST, and CIFAR datasets, demonstrating high prediction accuracy with minimal loss (e.g., only 0.1% on MNIST), along with transparent uncertainty measures. Visual analysis highlights variable uncertainty intervals, revealing low-confidence regions where model performance can be improved with additional data. Compared to Monte Carlo Dropout, FedNAM+ delivers efficient and global uncertainty estimates with reduced computational overhead, making it particularly suitable for federated learning scenarios. Overall, FedNAM+ provides a robust, interpretable, and computationally efficient framework that enhances trust and transparency in decentralized predictive modeling.

Advances of MR imaging in glioma: what the neurosurgeon needs to know.

Falk Delgado A

pubmed logopapersJun 21 2025
Glial tumors and especially glioblastoma present a major challenge in neuro-oncology due to their infiltrative growth, resistance to therapy, and poor overall survival-despite aggressive treatments such as maximal safe resection and chemoradiotherapy. These tumors typically manifest through neurological symptoms such as seizures, headaches, and signs of increased intracranial pressure, prompting urgent neuroimaging. At initial diagnosis, MRI plays a central role in differentiating true neoplasms from tumor mimics, including inflammatory or infectious conditions. Advanced techniques such as perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) enhance diagnostic specificity and may prevent unnecessary surgical intervention. In the preoperative phase, MRI contributes to surgical planning through the use of functional MRI (fMRI) and diffusion tensor imaging (DTI), enabling localization of eloquent cortex and white matter tracts. These modalities support safer resections by informing trajectory planning and risk assessment. Emerging MR techniques, including magnetic resonance spectroscopy, amide proton transfer imaging, and 2HG quantification, offer further potential in delineating tumor infiltration beyond contrast-enhancing margins. Postoperatively, MRI is important for evaluating residual tumor, detecting surgical complications, and guiding radiotherapy planning. During treatment surveillance, MRI assists in distinguishing true progression from pseudoprogression or radiation necrosis, thereby guiding decisions on additional surgery, changes in systemic therapy, or inclusion into clinical trials. The continued evolution of MRI hardware, software, and image analysis-particularly with the integration of machine learning-will be critical for supporting precision neurosurgical oncology. This review highlights how advanced MRI techniques can inform clinical decision-making at each stage of care in patients with high-grade gliomas.

DRIMV_TSK: An Interpretable Surgical Evaluation Model for Incomplete Multi-View Rectal Cancer Data

Wei Zhang, Zi Wang, Hanwen Zhou, Zhaohong Deng, Weiping Ding, Yuxi Ge, Te Zhang, Yuanpeng Zhang, Kup-Sze Choi, Shitong Wang, Shudong Hu

arxiv logopreprintJun 21 2025
A reliable evaluation of surgical difficulty can improve the success of the treatment for rectal cancer and the current evaluation method is based on clinical data. However, more data about rectal cancer can be collected with the development of technology. Meanwhile, with the development of artificial intelligence, its application in rectal cancer treatment is becoming possible. In this paper, a multi-view rectal cancer dataset is first constructed to give a more comprehensive view of patients, including the high-resolution MRI image view, pressed-fat MRI image view, and clinical data view. Then, an interpretable incomplete multi-view surgical evaluation model is proposed, considering that it is hard to obtain extensive and complete patient data in real application scenarios. Specifically, a dual representation incomplete multi-view learning model is first proposed to extract the common information between views and specific information in each view. In this model, the missing view imputation is integrated into representation learning, and second-order similarity constraint is also introduced to improve the cooperative learning between these two parts. Then, based on the imputed multi-view data and the learned dual representation, a multi-view surgical evaluation model with the TSK fuzzy system is proposed. In the proposed model, a cooperative learning mechanism is constructed to explore the consistent information between views, and Shannon entropy is also introduced to adapt the view weight. On the MVRC dataset, we compared it with several advanced algorithms and DRIMV_TSK obtained the best results.

Development of Radiomics-Based Risk Prediction Models for Stages of Hashimoto's Thyroiditis Using Ultrasound, Clinical, and Laboratory Factors.

Chen JH, Kang K, Wang XY, Chi JN, Gao XM, Li YX, Huang Y

pubmed logopapersJun 21 2025
To develop a radiomics risk-predictive model for differentiating the different stages of Hashimoto's thyroiditis (HT). Data from patients with HT who underwent definitive surgical pathology between January 2018 and December 2023 were retrospectively collected and categorized into early HT (HT patients with simple positive antibodies or simultaneously accompanied by elevated thyroid hormones) and late HT (HT patients with positive antibodies and beginning to present subclinical hypothyroidism or developing hypothyroidism). Ultrasound images and five clinical and 12 laboratory indicators were obtained. Six classifiers were used to construct radiomics models. The gradient boosting decision tree (GBDT) classifier was used to screen for the best features to explore the main risk factors for differentiating early HT. The performance of each model was evaluated by receiver operating characteristic (ROC) curve. The model was validated using one internal and two external test cohorts. A total of 785 patients were enrolled. Extreme gradient boosting (XGBOOST) showed best performance in the training cohort, with an AUC of 0.999 (0.998, 1), and AUC values of 0.993 (0.98, 1), 0.947 (0.866, 1), and 0.98 (0.939, 1), respectively, in the internal test, first external, and second external cohorts. Ultrasound radiomic features contributed to 78.6% (11/14) of the model. The first-order feature of traverse section of thyroid ultrasound image, texture feature gray-level run length matrix (GLRLM) of longitudinal section of thyroid ultrasound image and free thyroxine showed the greatest contributions in the model. Our study developed and tested a risk-predictive model that effectively differentiated HT stages to more precisely and actively manage patients with HT at an earlier stage.

Ultrasound placental image texture analysis using artificial intelligence and deep learning models to predict hypertension in pregnancy.

Arora U, Vigneshwar P, Sai MK, Yadav R, Sengupta D, Kumar M

pubmed logopapersJun 21 2025
This study considers the application of ultrasound placental image texture analysis for the prediction of hypertensive disorders of pregnancy (HDP) using deep learning (DL) algorithm. In this prospective observational study, placental ultrasound images were taken serially at 11-14 weeks (T1), 20-24 weeks (T2), and 28-32 weeks (T3). Pregnant women with blood pressure at or above 140/90 mmHg on two occasions 4 h apart were considered to have HDP. The image data of women with HDP were compared with those with a normal outcome using DL techniques such as convolutional neural networks (CNN), transfer learning, and a Vision Transformer (ViT) with a TabNet classifier. The accuracy and the Cohen kappa scores of the different DL techniques were compared. A total of 600/1008 (59.5%) subjects had a normal outcome, and 143/1008 (14.2%) had HDP; the reminder, 265/1008 (26.3%), had other adverse outcomes. In the basic CNN model, the accuracy was 81.6% for T1, 80% for T2, and 82.8% for T3. Using the Efficient Net B0 transfer learning model, the accuracy was 87.7%, 85.3%, and 90.3% for T1, T2, and T3, respectively. Using a TabNet classifier with a ViT, the accuracy and area under the receiver operating characteristic curve scores were 91.4% and 0.915 for T1, 90.2% and 0.904 for T2, and 90.3% and 0.907 for T3. The sensitivity and specificity for HDP prediction using ViT were 89.1% and 91.7% for T1, 86.6% and 93.7% for T2, and 85.6% and 94.6% for T3. Ultrasound placental image texture analysis using DL could differentiate women with a normal outcome and those with HDP with excellent accuracy and could open new avenues for research in this field.

The future of biomarkers for vascular contributions to cognitive impairment and dementia (VCID): proceedings of the 2025 annual workshop of the Albert research institute for white matter and cognition.

Lennon MJ, Karvelas N, Ganesh A, Whitehead S, Sorond FA, Durán Laforet V, Head E, Arfanakis K, Kolachalama VB, Liu X, Lu H, Ramirez J, Walker K, Weekman E, Wellington CL, Winston C, Barone FC, Corriveau RA

pubmed logopapersJun 21 2025
Advances in biomarkers and pathophysiology of vascular contributions to cognitive impairment and dementia (VCID) are expected to bring greater mechanistic insights, more targeted treatments, and potentially disease-modifying therapies. The 2025 Annual Workshop of the Albert Research Institute for White Matter and Cognition, sponsored by the Leo and Anne Albert Charitable Trust since 2015, focused on novel biomarkers for VCID. The meeting highlighted the complexity of dementia, emphasizing that the majority of cases involve multiple brain pathologies, with vascular pathology typically present. Potential novel approaches to diagnosis of disease processes and progression that may result in VCID included measures of microglial senescence and retinal changes, as well as artificial intelligence (AI) integration of multimodal datasets. Proteomic studies identified plasma proteins associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL; a rare genetic disorder affecting brain vessels) and age-related vascular pathology that suggested potential therapeutic targets. Blood-based microglial and brain-derived extracellular vesicles are promising tools for early detection of brain inflammation and other changes that have been associated with cognitive decline. Imaging measures of blood perfusion, oxygen extraction, and cerebrospinal fluid (CSF) flow were discussed as potential VCID biomarkers, in part because of correlations with classic pathological Alzheimer's disease (AD) biomarkers. MRI-visible perivascular spaces, which may be a novel imaging biomarker of sleep-driven glymphatic waste clearance dysfunction, are associated with vascular risk factors, lower cognitive function, and various brain pathologies including Alzheimer's, Parkinson's and cerebral amyloid angiopathy (CAA). People with Down syndrome are at high risk for dementia. Individuals with Down syndrome who develop dementia almost universally experience mixed brain pathologies, with AD pathology and cerebrovascular pathology being the most common. This follows the pattern in the general population where mixed pathologies are also predominant in the brains of people clinically diagnosed with dementia, including AD dementia. Intimate partner violence-related brain injury, hypertension's impact on dementia risk, and the promise of remote ischemic conditioning for treating VCID were additional themes.

The diagnostic accuracy of MRI radiomics in axillary lymph node metastasis prediction: a systematic review and meta-analysis.

Motiei M, Mansouri SS, Tamimi A, Farokhi S, Fakouri A, Rassam K, Sedighi-Pirsaraei N, Hassanzadeh-Rad A

pubmed logopapersJun 20 2025
Breast cancer is the most prevalent malignancy in women and a leading cause of mortality. Accurate assessment of axillary lymph node metastasis (LNM) is critical for breast cancer management. Exploring non-invasive methods such as radiomics for the detection of LNM is highly important. We systematically searched Pubmed, Embase, Scopus, Web of Science and google scholar until 11 March 2024. To assess the risk of bias and quality of studies, we utilized the quality assessment of diagnostic accuracy studies (QUADAS) tool as well as the radiomics quality score (RQS). Area under the curve (AUC), sensitivity, specificity and accuracy were determined for each study to evaluate the diagnostic accuracy of radiomics in magnetic resonance imaging (MRI) for detecting LNM in patients with breast cancer. This meta-analysis of 20 studies (5072 patients) demonstrated an overall AUC of 0.83 (95% confidence interval (CI): 0.80-0.86). Subgroup analysis revealed a trend towards higher specificity when radiomics was combined with clinical factors (0.83) compared to radiomics alone (0.79). Sensitivity analysis confirmed the robustness of the findings and publication bias was not evident. The radiomics models increased the likelihood of a positive LNM outcome from 37% to 73.2% when initial probability was positive and decreased the likelihood to 8% when initial probability was negative, highlighting their potential clinical utility. Radiomics as a non-invasive method demonstrates strong potential for detecting LNM in breast cancer, offering clinical promise. However, further standardization and validation are needed in future studies.

Research hotspots and development trends in molecular imaging of glioma (2014-2024): A bibliometric review.

Zhou H, Luo Y, Li S, Zhang G, Zeng X

pubmed logopapersJun 20 2025
This study aims to explore research hotspots and development trends in molecular imaging of glioma from 2014 to 2024. A total of 2957 publications indexed in the web of science core collection (WoSCC) were analyzed using bibliometric techniques. To visualize the research landscape, co-citation clustering, keyword analysis, and technological trend mapping were performed using CiteSpace and Excel. Publication output peaked in 2021. Emerging research trends included the integration of radiomics and artificial intelligence and the application of novel imaging modalities such as positron emission tomography and magnetic resonance spectroscopy. Significant progress was observed in blood-brain barrier disruption techniques and the development of molecular probes, especially those targeting IDH and MGMT mutations. Molecular imaging has been pivotal in advancing glioma research, contributing to improved diagnostic accuracy and personalized treatment strategies. However, challenges such as clinical translation and standardization remain. Future studies should focus on integrating advanced technologies into routine clinical practice to enhance patient care.

Artificial Intelligence for Early Detection and Prognosis Prediction of Diabetic Retinopathy

Budi Susilo, Y. K., Yuliana, D., Mahadi, M., Abdul Rahman, S., Ariffin, A. E.

medrxiv logopreprintJun 20 2025
This review explores the transformative role of artificial intelligence (AI) in the early detection and prognosis prediction of diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients. AI, particularly deep learning and convolutional neural networks (CNNs), has demonstrated remarkable accuracy in analyzing retinal images, identifying early-stage DR with high sensitivity and specificity. These advancements address critical challenges such as intergrader variability in manual screening and the limited availability of specialists, especially in underserved regions. The integration of AI with telemedicine has further enhanced accessibility, enabling remote screening through portable devices and smartphone-based imaging. Economically, AI-based systems reduce healthcare costs by optimizing resource allocation and minimizing unnecessary referrals. Key findings highlight the dominance of Medicine (819 documents) and Computer Science (613 documents) in research output, reflecting the interdisciplinary nature of this field. Geographically, China, the United States, and India lead in contributions, underscoring global efforts to combat DR. Despite these successes, challenges such as algorithmic bias, data privacy, and the need for explainable AI (XAI) remain. Future research should focus on multi-center validation, diverse AI methodologies, and clinician-friendly tools to ensure equitable adoption. By addressing these gaps, AI can revolutionize DR management, reducing the global burden of diabetes-related blindness through early intervention and scalable solutions.
Page 165 of 2442432 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.