Ultrasound placental image texture analysis using artificial intelligence and deep learning models to predict hypertension in pregnancy.

Authors

Arora U,Vigneshwar P,Sai MK,Yadav R,Sengupta D,Kumar M

Affiliations (2)

  • Lady Hardinge Medical College, IIIT Delhi, New Delhi, India.
  • Lady Hardinge Medical College, Department of Obstetrics and Gynecology, LHMC, New Delhi, India.

Abstract

This study considers the application of ultrasound placental image texture analysis for the prediction of hypertensive disorders of pregnancy (HDP) using deep learning (DL) algorithm. In this prospective observational study, placental ultrasound images were taken serially at 11-14 weeks (T1), 20-24 weeks (T2), and 28-32 weeks (T3). Pregnant women with blood pressure at or above 140/90 mmHg on two occasions 4 h apart were considered to have HDP. The image data of women with HDP were compared with those with a normal outcome using DL techniques such as convolutional neural networks (CNN), transfer learning, and a Vision Transformer (ViT) with a TabNet classifier. The accuracy and the Cohen kappa scores of the different DL techniques were compared. A total of 600/1008 (59.5%) subjects had a normal outcome, and 143/1008 (14.2%) had HDP; the reminder, 265/1008 (26.3%), had other adverse outcomes. In the basic CNN model, the accuracy was 81.6% for T1, 80% for T2, and 82.8% for T3. Using the Efficient Net B0 transfer learning model, the accuracy was 87.7%, 85.3%, and 90.3% for T1, T2, and T3, respectively. Using a TabNet classifier with a ViT, the accuracy and area under the receiver operating characteristic curve scores were 91.4% and 0.915 for T1, 90.2% and 0.904 for T2, and 90.3% and 0.907 for T3. The sensitivity and specificity for HDP prediction using ViT were 89.1% and 91.7% for T1, 86.6% and 93.7% for T2, and 85.6% and 94.6% for T3. Ultrasound placental image texture analysis using DL could differentiate women with a normal outcome and those with HDP with excellent accuracy and could open new avenues for research in this field.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.