Sort by:
Page 159 of 3563559 results

Advances in IPMN imaging: deep learning-enhanced HASTE improves lesion assessment.

Kolck J, Pivetta F, Hosse C, Cao H, Fehrenbach U, Malinka T, Wagner M, Walter-Rittel T, Geisel D

pubmed logopapersJul 21 2025
The prevalence of asymptomatic pancreatic cysts is increasing due to advances in imaging techniques. Among these, intraductal papillary mucinous neoplasms (IPMNs) are most common, with potential for malignant transformation, often necessitating close follow-up. This study evaluates novel MRI techniques for the assessment of IPMN. From May to December 2023, 59 patients undergoing abdominal MRI were retrospectively enrolled. Examinations were conducted on 3-Tesla scanners using a Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) and standard HASTE (HASTE<sub>S</sub>) sequence. Two readers assessed minimum detectable lesion size and lesion-to-parenchyma contrast quantitatively, and qualitative assessments focused on image quality. Statistical analyses included the Wilcoxon signed-rank and chi-squared tests. HASTE<sub>DL</sub> demonstrated superior overall image quality (p < 0.001), with higher sharpness and contrast ratings (p < 0.001, p = 0.112). HASTE<sub>DL</sub> showed enhanced conspicuity of IPMN (p < 0.001) and lymph nodes (p < 0.001), with more frequent visualization of IPMN communication with the pancreatic duct (p < 0.001). Visualization of complex features (dilated pancreatic duct, septa, and mural nodules) was superior in HASTE<sub>DL</sub> (p < 0.001). The minimum detectable cyst size was significantly smaller for HASTE<sub>DL</sub> (4.17 mm ± 3.00 vs. 5.51 mm ± 4.75; p < 0.001). Inter-reader agreement was for (к 0.936) for HASTE<sub>DL</sub>, slightly lower (к 0.885) for HASTE<sub>S</sub>. HASTE<sub>DL</sub> in IPMN imaging provides superior image quality and significantly reduced scan times. Given the increasing prevalence of IPMN and the ensuing clinical need for fast and precise imaging, HASTE<sub>DL</sub> improves the availability and quality of patient care. Question Are there advantages of deep-learning-accelerated MRI in imaging and assessing intraductal papillary mucinous neoplasms (IPMN)? Findings Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) demonstrated superior image quality, improved conspicuity of "worrisome features" and detection of smaller cysts, with significantly reduced scan times. Clinical relevance HASTEDL provides faster, high-quality MRI imaging, enabling improved diagnostic accuracy and timely risk stratification for IPMN, potentially enhancing patient care and addressing the growing clinical demand for efficient imaging of IPMN.

Establishment of AI-assisted diagnosis of the infraorbital posterior ethmoid cells based on deep learning.

Ni T, Qian X, Zeng Q, Ma Y, Xie Z, Dai Y, Che Z

pubmed logopapersJul 21 2025
To construct an artificial intelligence (AI)-assisted model for identifying the infraorbital posterior ethmoid cells (IPECs) based on deep learning using sagittal CT images. Sagittal CT images of 277 samples with and 142 samples without IPECs were retrospectively collected. An experienced radiologist engaged in the relevant aspects picked a sagittal CT image that best showed IPECs. The images were randomly assigned to the training and test sets, with 541 sides in the training set and 97 sides in the test set. The training set was used to perform a five-fold cross-validation, and the results of each fold were used to predict the test set. The model was built using nnUNet, and its performance was evaluated using Dice and standard classification metrics. The model achieved a Dice coefficient of 0.900 in the training set and 0.891 in the additional set. Precision was 0.965 for the training set and 1.000 for the additional set, while sensitivity was 0.981 and 0.967, respectively. A comparison of the diagnostic efficacy between manual outlining by a less-experienced radiologist and AI-assisted outlining showed a significant improvement in detection efficiency (P < 0.05). The AI model aided correctly in identifying and outlining all IPECs, including 12 sides that the radiologist should improve portraying. AI models can help radiologists identify the IPECs, which can further prompt relevant clinical interventions.

Artificial intelligence-generated apparent diffusion coefficient (AI-ADC) maps for prostate gland assessment: a multi-reader study.

Ozyoruk KB, Harmon SA, Yilmaz EC, Huang EP, Gelikman DG, Gaur S, Giganti F, Law YM, Margolis DJ, Jadda PK, Raavi S, Gurram S, Wood BJ, Pinto PA, Choyke PL, Turkbey B

pubmed logopapersJul 21 2025
To compare the quality of AI-ADC maps and standard ADC maps in a multi-reader study. Multi-reader study included 74 consecutive patients (median age = 66 years, [IQR = 57.25-71.75 years]; median PSA = 4.30 ng/mL [IQR = 1.33-7.75 ng/mL]) with suspected or confirmed PCa, who underwent mpMRI between October 2023 and January 2024. The study was conducted in two rounds, separated by a 4-week wash-out period. In each round, four readers evaluated T2W-MRI and standard or AI-generated ADC (AI-ADC) maps. Fleiss' kappa, quadratic-weighted Cohen's kappa statistics were used to assess inter-reader agreement. Linear mixed effect models were employed to compare the quality evaluation of standard versus AI-ADC maps. AI-ADC maps exhibited significantly enhanced imaging quality compared to standard ADC maps with higher ratings in windowing ease (β = 0.67 [95% CI 0.30-1.04], p < 0.05), prostate boundary delineation (β = 1.38 [95% CI 1.03-1.73], p < 0.001), reductions in distortion (β = 1.68 [95% CI 1.30-2.05], p < 0.001), noise (β = 0.56 [95% CI 0.24-0.88], p < 0.001). AI-ADC maps reduced reacquisition requirements for all readers (β = 2.23 [95% CI 1.69-2.76], p < 0.001), supporting potential workflow efficiency gains. No differences were observed between AI-ADC and standard ADC maps' inter-reader agreement. Our multi-reader study demonstrated that AI-ADC maps improved prostate boundary delineation, had lower image noise, fewer distortions, and higher overall image quality compared to ADC maps. Question Can we synthesize apparent diffusion coefficient (ADC) maps with AI to achieve higher quality maps? Findings On average, readers rated quality factors of AI-ADC maps higher than ADC maps in 34.80% of cases, compared to 5.07% for ADC (p < 0.01). Clinical relevance AI-ADC maps may serve as a reliable diagnostic support tool thanks to their high quality, particularly when the acquired ADC maps include artifacts.

AI-based body composition analysis of CT data has the potential to predict disease course in patients with multiple myeloma.

Wegner F, Sieren MM, Grasshoff H, Berkel L, Rowold C, Röttgerding MP, Khalil S, Mogadas S, Nensa F, Hosch R, Riemekasten G, Hamm AF, von Bubnoff N, Barkhausen J, Kloeckner R, Khandanpour C, Leitner T

pubmed logopapersJul 21 2025
The aim of this study was to evaluate the benefit of a volumetric AI-based body composition analysis (BCA) algorithm in multiple myeloma (MM). Therefore, a retrospective monocentric cohort of 91 MM patients was analyzed. The BCA algorithm, powered by a convolutional neural network, quantified tissue compartments and bone density based on routine CT scans. Correlations between BCA data and demographic/clinical parameters were investigated. BCA-endotypes were identified and survival rates were compared between BCA-derived patient clusters. Patients with high-risk cytogenetics exhibited elevated cardiac marker index values. Across Revised-International Staging System (R-ISS) categories, BCA parameters did not show significant differences. However, both subcutaneous and total adipose tissue volumes were significantly lower in patients with progressive disease or death during follow-up compared to patients without progression. Cluster analysis revealed two distinct BCA-endotypes, with one group displaying significantly better survival. Furthermore, a combined model composed of clinical parameters and BCA data demonstrated a higher predictive capability for disease progression compared to models based solely on high-risk cytogenetics or R-ISS. These findings underscore the potential of BCA to improve patient stratification and refining prognostic models in MM.

ASD-GraphNet: A novel graph learning approach for Autism Spectrum Disorder diagnosis using fMRI data.

Zeraati M, Davoodi A

pubmed logopapersJul 21 2025
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with heterogeneous symptomatology, making accurate diagnosis challenging. Traditional methods rely on subjective behavioral assessments, often overlooking subtle neural biomarkers. This study introduces ASD-GraphNet, a novel graph-based learning framework for diagnosing ASD using functional Magnetic Resonance Imaging (fMRI) data. Leveraging the Autism Brain Imaging Data Exchange (ABIDE) dataset, ASD-GraphNet constructs brain networks based on established atlases (Craddock 200, AAL, and Dosenbach 160) to capture intricate connectivity patterns. The framework employs systematic preprocessing, graph construction, and advanced feature extraction to derive node-level, edge-level, and graph-level metrics. Feature engineering techniques, including Mutual Information-based selection and Principal Component Analysis (PCA), are applied to enhance classification performance. ASD-GraphNet evaluates a range of classifiers, including Logistic Regression, Support Vector Machines, and ensemble methods like XGBoost and LightGBM, achieving an accuracy of 75.25% in distinguishing individuals with ASD from healthy controls. This demonstrates the framework's potential to provide objective, data-driven diagnostics based solely on resting-state fMRI data. By integrating graph-based learning with neuroimaging and addressing dataset imbalance, ASD-GraphNet offers a scalable and interpretable solution for early ASD detection, paving the way for more reliable interventions. The GitHub repository for this project is available at: https://github.com/AmirDavoodi/ASD-GraphNet.

Transfer Learning for Automated Two-class Classification of Pulmonary Tuberculosis in Chest X-Ray Images.

Nayyar A, Shrivastava R, Jain S

pubmed logopapersJul 21 2025
Early and precise diagnosis is essential for effectively treating and managing pulmonary tuberculosis. The purpose of this research is to leverage artificial intelligence (AI), specifically convolutional neural networks (CNNs), to expedite the diagnosis of tuberculosis (TB) using chest X-ray (CXR) images. Mycobacterium tuberculosis, an aerobic bacterium, is the causative agent of TB. The disease remains a global health challenge, particularly in densely populated countries. Early detection via chest X-rays is crucial, but limited medical expertise hampers timely diagnosis. This study explores the application of CNNs, a highly efficient method, for automated TB detection, especially in areas with limited medical expertise. Previously trained models, specifically VGG-16, VGG-19, ResNet 50, and Inception v3, were used to validate the data. Effective feature extraction and classification in medical image analysis, especially in TB diagnosis, is facilitated by the distinct design and capabilities that each model offers. VGG-16 and VGG-19 are very good at identifying minute distinctions and hierarchical characteristics from CXR images; on the other hand, ResNet 50 avoids overfitting while retaining both low and high-level features. The inception v3 model is quite useful for examining various complex patterns in a CXR image with its capacity to extract multi-scale features. Inception v3 outperformed other models, attaining 97.60% accuracy without pre-processing and 98.78% with pre-processing. The proposed model shows promising results as a tool for improving TB diagnosis, and reducing the global impact of the disease, but further validation with larger and more diverse datasets is needed.

An Improved Diagnostic Deep Learning Model for Cervical Lymphadenopathy Characterization.

Gong W, Li M, Wang S, Jiang Y, Wu J, Li X, Ma C, Luo H, Zhou H

pubmed logopapersJul 21 2025
To validate the diagnostic performance of a B-mode ultrasound-based deep learning (DL) model in distinguishing benign and malignant cervical lymphadenopathy (CLP). A total of 210 CLPs with conclusive pathological results were retrospectively included and separated as training (n = 169) or test cohort (n = 41) randomly at a ratio of 4:1. A DL model integrating convolutional neural network, deformable convolution network and attention mechanism was developed. Three diagnostic models were developed: (a) Model I, CLPs with at least one suspicious B-mode ultrasound feature (ratio of longitudinal to short diameter < 2, irregular margin, hyper-echogenicity, hilus absence, cystic necrosis and calcification) were deemed malignant; (b) Model II: total risk score of B-mode ultrasound features obtained by multivariate logistic regression and (c) Model III: CLPs with positive DL output are deemed malignant. The diagnostic utility of these models was assessed by the area under the receiver operating curve (AUC) and corresponding sensitivity and specificity. Multivariate analysis indicated that DL positive result was the most important factor associated with malignant CLPs [odds ratio (OR) = 39.05, p < 0.001], only followed by hilus absence (OR = 6.01, p = 0.001) in the training cohort. In the test cohort, the AUC of the DL model (0.871) was significantly higher than that in model I (AUC = 0.681, p = 0.04) and model II (AUC = 0.679, p = 0.03), respectively. In addition, model III obtained 93.3% specificity, which was significantly higher than that in model I (40.0%, p = 0.002) and model II (60.0%, p = 0.03), respectively. Although the sensitivity of model I was the highest, it did not show a significant difference compared to that of model III (96.2% vs.80.8%, p = 0.083). B-mode ultrasound-based DL is a potentially robust tool for the differential diagnosis of benign and malignant CLPs.

Automated extraction of vertebral bone mineral density from imaging with various scan parameters: a cadaver study with correlation to quantitative computed tomography.

Ramschütz C, Kloth C, Vogele D, Baum T, Rühling S, Beer M, Jansen JU, Schlager B, Wilke HJ, Kirschke JS, Sollmann N

pubmed logopapersJul 21 2025
To investigate lumbar vertebral volumetric bone mineral density (vBMD) from ex vivo opportunistic multi-detector computed tomography (MDCT) scans using different protocols, and compare it to dedicated quantitative CT (QCT) values from the same specimens. Cadavers from two female donors (ages 62 and 68 years) were scanned (L1-L5) using six different MDCT protocols and one dedicated QCT scan. Opportunistic vBMD was extracted using an artificial intelligence-based algorithm. The vBMD measurements from the six MDCT protocols, which varied in peak tube voltage (80-140 kVp), tube load (72-200 mAs), slice thickness (0.75-1 mm), and/or slice increment (0.5-0.75 mm), were compared to those obtained from dedicated QCT. A strong positive correlation was observed between vBMD from opportunistic MDCT and reference QCT (ρ = 0.869, p < 0.01). Agreement between vBMD measurements from MDCT protocols and the QCT reference standard according to the intraclass correlation coefficient (ICC) was 0.992 (95% confidence interval [CI]: 0.982-0.998). Bland-Altman analysis showed biases ranging from - 12.66 to 8.00 mg/cm³ across the six MDCT protocols, with all data points falling within the respective limits of agreement (LOA) for both cadavers. Opportunistic vBMD measurements of lumbar vertebrae demonstrated reliable consistency ex vivo across various scan parameters when compared to dedicated QCT.

Prediction of OncotypeDX recurrence score using H&E stained WSI images

Cohen, S., Shamai, G., Sabo, E., Cretu, A., Barshack, I., Goldman, T., Bar-Sela, G., Pearson, A. T., Huo, D., Howard, F. M., Kimmel, R., Mayer, C.

medrxiv logopreprintJul 21 2025
The OncotypeDX 21-gene assay is a widely adopted tool for estimating recurrence risk and informing chemotherapy decisions in early-stage, hormone receptor-positive, HER2-negative breast cancer. Although informative, its high cost and long turnaround time limit accessibility and delay treatment in low- and middle-income countries, creating a need for alternative solutions. This study presents a deep learning-based approach for predicting OncotypeDX recurrence scores directly from hematoxylin and eosin-stained whole slide images. Our approach leverages a deep learning foundation model pre-trained on 171,189 slides via self-supervised learning, which is fine-tuned for our task. The model was developed and validated using five independent cohorts, out of which three are external. On the two external cohorts that include OncotypeDX scores, the model achieved an AUC of 0.825 and 0.817, and identified 21.9% and 25.1% of the patients as low-risk with sensitivity of 0.97 and 0.95 and negative predictive value of 0.97 and 0.96, showing strong generalizability despite variations in staining protocols and imaging devices. Kaplan-Meier analysis demonstrated that patients classified as low-risk by the model had a significantly better prognosis than those classified as high-risk, with a hazard ratio of 4.1 (P<0.001) and 2.0 (P<0.01) on the two external cohorts that include patient outcomes. This artificial intelligence-driven solution offers a rapid, cost-effective, and scalable alternative to genomic testing, with the potential to enhance personalized treatment planning, especially in resource-constrained settings.

DREAM: A framework for discovering mechanisms underlying AI prediction of protected attributes

Gadgil, S. U., DeGrave, A. J., Janizek, J. D., Xu, S., Nwandu, L., Fonjungo, F., Lee, S.-I., Daneshjou, R.

medrxiv logopreprintJul 21 2025
Recent advances in Artificial Intelligence (AI) have started disrupting the healthcare industry, especially medical imaging, and AI devices are increasingly being deployed into clinical practice. Such classifiers have previously demonstrated the ability to discern a range of protected demographic attributes (like race, age, sex) from medical images with unexpectedly high performance, a sensitive task which is difficult even for trained physicians. In this study, we motivate and introduce a general explainable AI (XAI) framework called DREAM (DiscoveRing and Explaining AI Mechanisms) for interpreting how AI models trained on medical images predict protected attributes. Focusing on two modalities, radiology and dermatology, we are successfully able to train high-performing classifiers for predicting race from chest x-rays (ROC-AUC score of [~]0.96) and sex from dermoscopic lesions (ROC-AUC score of [~]0.78). We highlight how incorrect use of these demographic shortcuts can have a detrimental effect on the performance of a clinically relevant downstream task like disease diagnosis under a domain shift. Further, we employ various XAI techniques to identify specific signals which can be leveraged to predict sex. Finally, we propose a technique, which we callremoval via balancing, to quantify how much a signal contributes to the classification performance. Using this technique and the signals identified, we are able to explain [~]15% of the total performance for radiology and [~]42% of the total performance for dermatology. We envision DREAM to be broadly applicable to other modalities and demographic attributes. This analysis not only underscores the importance of cautious AI application in healthcare but also opens avenues for improving the transparency and reliability of AI-driven diagnostic tools.
Page 159 of 3563559 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.