Sort by:
Page 15 of 39382 results

Gender and Ethnicity Bias of Text-to-Image Generative Artificial Intelligence in Medical Imaging, Part 2: Analysis of DALL-E 3.

Currie G, Hewis J, Hawk E, Rohren E

pubmed logopapersJun 4 2025
Disparity among gender and ethnicity remains an issue across medicine and health science. Only 26%-35% of trainee radiologists are female, despite more than 50% of medical students' being female. Similar gender disparities are evident across the medical imaging professions. Generative artificial intelligence text-to-image production could reinforce or amplify gender biases. <b>Methods:</b> In March 2024, DALL-E 3 was utilized via GPT-4 to generate a series of individual and group images of medical imaging professionals: radiologist, nuclear medicine physician, radiographer, nuclear medicine technologist, medical physicist, radiopharmacist, and medical imaging nurse. Multiple iterations of images were generated using a variety of prompts. Collectively, 120 images were produced for evaluation of 524 characters. All images were independently analyzed by 3 expert reviewers from medical imaging professions for apparent gender and skin tone. <b>Results:</b> Collectively (individual and group images), 57.4% (<i>n</i> = 301) of medical imaging professionals were depicted as male, 42.4% (<i>n</i> = 222) as female, and 91.2% (<i>n</i> = 478) as having a light skin tone. The male gender representation was 65% for radiologists, 62% for nuclear medicine physicians, 52% for radiographers, 56% for nuclear medicine technologists, 62% for medical physicists, 53% for radiopharmacists, and 26% for medical imaging nurses. For all professions, this overrepresents men compared with women. There was no representation of persons with a disability. <b>Conclusion:</b> This evaluation reveals a significant overrepresentation of the male gender associated with generative artificial intelligence text-to-image production using DALL-E 3 across the medical imaging professions. Generated images have a disproportionately high representation of white men, which is not representative of the diversity of the medical imaging professions.

3D Quantification of Viral Transduction Efficiency in Living Human Retinal Organoids

Rogler, T. S., Salbaum, K. A., Brinkop, A. T., Sonntag, S. M., James, R., Shelton, E. R., Thielen, A., Rose, R., Babutzka, S., Klopstock, T., Michalakis, S., Serwane, F.

biorxiv logopreprintJun 4 2025
The development of therapeutics builds on testing their efficiency in vitro. To optimize gene therapies, for example, fluorescent reporters expressed by treated cells are typically utilized as readouts. Traditionally, their global fluorescence signal has been used as an estimate of transduction efficiency. However, analysis in individual cells within a living 3D tissue remains a challenge. Readout on a single-cell level can be realized via fluo-rescence-based flow cytometry at the cost of tissue dissociation and loss of spatial information. Complementary, spatial information is accessible via immunofluorescence of fixed samples. Both approaches impede time-dependent studies on the delivery of the vector to the cells. Here, quantitative 3D characterization of viral transduction efficiencies in living retinal organoids is introduced. The approach combines quantified gene delivery efficiency in space and time, leveraging human retinal organ-oids, engineered adeno-associated virus (AAV) vectors, confocal live imaging, and deep learning-based image segmentation. The integration of these tools in an organoid imaging and analysis pipeline allows quantitative testing of future treatments and other gene delivery methods. It has the potential to guide the development of therapies in biomedical applications.

Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice.

Fink A, Rau A, Reisert M, Bamberg F, Russe MF

pubmed logopapersJun 4 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Large language models (LLMs) hold substantial promise in addressing the growing workload in radiology, but recent studies also reveal limitations, such as hallucinations and opacity in sources for LLM responses. Retrieval-augmented Generation (RAG) based LLMs offer a promising approach to streamline radiology workflows by integrating reliable, verifiable, and customizable information. Ongoing refinement is critical to enable RAG models to manage large amounts of input data and to engage in complex multiagent dialogues. This report provides an overview of recent advances in LLM architecture, including few-shot and zero-shot learning, RAG integration, multistep reasoning, and agentic RAG, and identifies future research directions. Exemplary cases demonstrate the practical application of these techniques in radiology practice. ©RSNA, 2025.

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR.

Allaw S, Khabaz K, Given TC, Montas D, Alcazar-Felix RJ, Srinath A, Kass-Hout T, Carroll TJ, Hurley MC, Polster SP

pubmed logopapersJun 3 2025
Traditional guidance for intracranial aneurysm (IA) management is dichotomized by rupture status. Fundamental to the management of ruptured aneurysm is the detection and treatment of SAH, along with securing the aneurysm by the safest technique. On the other hand, unruptured aneurysms first require a careful assessment of their natural history versus treatment risk, including an imaging assessment of aneurysm size, location, and morphology, along with additional evidence-based risk factors such as smoking, hypertension, and family history. Unfortunately, a large proportion of ruptured aneurysms are in the lower risk size category (<7 mm), putting a premium on discovering a more refined noninvasive biomarker to detect and stratify aneurysm instability before rupture. In this review of aneurysm work-up, we cover the gamut of established imaging modalities (eg, CT, CTA, DSA, FLAIR, 3D TOF-MRA, contrast-enhanced-MRA) as well as more novel MR techniques (MR vessel wall imaging, dynamic contrast-enhanced MRI, computational fluid dynamics). Additionally, we evaluate the current landscape of artificial intelligence software and its integration into diagnostic and risk-stratification pipelines for IAs. These advanced MR techniques, increasingly complemented with artificial intelligence models, offer a paradigm shift by evaluating factors beyond size and morphology, including vessel wall inflammation, permeability, and hemodynamics. Additionally, we provide our institution's scan parameters for many of these modalities as a reference. Ultimately, this review provides an organized, up-to-date summary of the array of available modalities/sequences for IA imaging to help build protocols focused on IA characterization.

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models

Nurislam Tursynbek, Hastings Greer, Basar Demir, Marc Niethammer

arxiv logopreprintJun 3 2025
Diffusion models, while trained for image generation, have emerged as powerful foundational feature extractors for downstream tasks. We find that off-the-shelf diffusion models, trained exclusively to generate natural RGB images, can identify semantically meaningful correspondences in medical images. Building on this observation, we propose to leverage diffusion model features as a similarity measure to guide deformable image registration networks. We show that common intensity-based similarity losses often fail in challenging scenarios, such as when certain anatomies are visible in one image but absent in another, leading to anatomically inaccurate alignments. In contrast, our method identifies true semantic correspondences, aligning meaningful structures while disregarding those not present across images. We demonstrate superior performance of our approach on two tasks: multimodal 2D registration (DXA to X-Ray) and monomodal 3D registration (brain-extracted to non-brain-extracted MRI). Code: https://github.com/uncbiag/dgir

petBrain: A New Pipeline for Amyloid, Tau Tangles and Neurodegeneration Quantification Using PET and MRI

Pierrick Coupé, Boris Mansencal, Floréal Morandat, Sergio Morell-Ortega, Nicolas Villain, Jose V. Manjón, Vincent Planche

arxiv logopreprintJun 3 2025
INTRODUCTION: Quantification of amyloid plaques (A), neurofibrillary tangles (T2), and neurodegeneration (N) using PET and MRI is critical for Alzheimer's disease (AD) diagnosis and prognosis. Existing pipelines face limitations regarding processing time, variability in tracer types, and challenges in multimodal integration. METHODS: We developed petBrain, a novel end-to-end processing pipeline for amyloid-PET, tau-PET, and structural MRI. It leverages deep learning-based segmentation, standardized biomarker quantification (Centiloid, CenTauR, HAVAs), and simultaneous estimation of A, T2, and N biomarkers. The pipeline is implemented as a web-based platform, requiring no local computational infrastructure or specialized software knowledge. RESULTS: petBrain provides reliable and rapid biomarker quantification, with results comparable to existing pipelines for A and T2. It shows strong concordance with data processed in ADNI databases. The staging and quantification of A/T2/N by petBrain demonstrated good agreement with CSF/plasma biomarkers, clinical status, and cognitive performance. DISCUSSION: petBrain represents a powerful and openly accessible platform for standardized AD biomarker analysis, facilitating applications in clinical research.

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

Development and validation of machine learning models for distal instrumentation-related problems in patients with degenerative lumbar scoliosis based on preoperative CT and MRI.

Feng Z, Yang H, Li Z, Zhang X, Hai Y

pubmed logopapersJun 3 2025
This investigation proposes a machine learning framework leveraging preoperative MRI and CT imaging data to predict postoperative complications related to distal instrumentation (DIP) in degenerative lumbar scoliosis patients undergoing long-segment fusion procedures. We retrospectively analyzed 136 patients, categorizing based on the development of DIP. Preoperative MRI and CT scans provided muscle function and bone density data, including the relative gross cross-sectional area and relative functional cross-sectional area of the multifidus, erector spinae, paraspinal extensor, psoas major muscles, the gross muscle fat index and functional muscle fat index, Hounsfield unit values of the lumbosacral region and the lower instrumented vertebra. Predictive factors for DIP were selected through stepwise LASSO regression. The filtered and all factors were incorporated into six machine learning algorithms twice, namely k-nearest neighbors, decision tree, support vector machine, random forest, multilayer perceptron (MLP), and Naïve Bayes, with tenfold cross-validation. Among patients, 16.9% developed DIP, with the multifidus' functional cross-sectional area and lumbosacral region's Hounsfield unit value as significant predictors. The MLP model exhibited superior performance when all predictive factors were input, with an average AUC of 0.98 and recall rate of 0.90. We compared various machine learning algorithms and constructed, trained, and validated predictive models based on muscle function and bone density-related variables obtained from preoperative CT and MRI, which could identify patients with high risk of DIP after long-segment spinal fusion surgery.

Evaluating the Diagnostic Accuracy of ChatGPT-4.0 for Classifying Multimodal Musculoskeletal Masses: A Comparative Study with Human Raters.

Bosbach WA, Schoeni L, Beisbart C, Senge JF, Mitrakovic M, Anderson SE, Achangwa NR, Divjak E, Ivanac G, Grieser T, Weber MA, Maurer MH, Sanal HT, Daneshvar K

pubmed logopapersJun 3 2025
Novel artificial intelligence tools have the potential to significantly enhance productivity in medicine, while also maintaining or even improving treatment quality. In this study, we aimed to evaluate the current capability of ChatGPT-4.0 to accurately interpret multimodal musculoskeletal tumor cases.We created 25 cases, each containing images from X-ray, computed tomography, magnetic resonance imaging, or scintigraphy. ChatGPT-4.0 was tasked with classifying each case using a six-option, two-choice question, where both a primary and a secondary diagnosis were allowed. For performance evaluation, human raters also assessed the same cases.When only the primary diagnosis was taken into account, the accuracy of human raters was greater than that of ChatGPT-4.0 by a factor of nearly 2 (87% vs. 44%). However, in a setting that also considered secondary diagnoses, the performance gap shrank substantially (accuracy: 94% vs. 71%). Power analysis relying on Cohen's w confirmed the adequacy of the sample set size (n: 25).The tested artificial intelligence tool demonstrated lower performance than human raters. Considering factors such as speed, constant availability, and potential future improvements, it appears plausible that artificial intelligence tools could serve as valuable assistance systems for doctors in future clinical settings. · ChatGPT-4.0 classifies musculoskeletal cases using multimodal imaging inputs.. · Human raters outperform AI in primary diagnosis accuracy by a factor of nearly two.. · Including secondary diagnoses improves AI performance and narrows the gap.. · AI demonstrates potential as an assistive tool in future radiological workflows.. · Power analysis confirms robustness of study findings with the current sample size.. · Bosbach WA, Schoeni L, Beisbart C et al. Evaluating the Diagnostic Accuracy of ChatGPT-4.0 for Classifying Multimodal Musculoskeletal Masses: A Comparative Study with Human Raters. Rofo 2025; DOI 10.1055/a-2594-7085.
Page 15 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.