Sort by:
Page 15 of 21210 results

ESR Essentials: how to get to valuable radiology AI: the role of early health technology assessment-practice recommendations by the European Society of Medical Imaging Informatics.

Kemper EHM, Erenstein H, Boverhof BJ, Redekop K, Andreychenko AE, Dietzel M, Groot Lipman KBW, Huisman M, Klontzas ME, Vos F, IJzerman M, Starmans MPA, Visser JJ

pubmed logopapersJun 1 2025
AI tools in radiology are revolutionising the diagnosis, evaluation, and management of patients. However, there is a major gap between the large number of developed AI tools and those translated into daily clinical practice, which can be primarily attributed to limited usefulness and trust in current AI tools. Instead of technically driven development, little effort has been put into value-based development to ensure AI tools will have a clinically relevant impact on patient care. An iterative comprehensive value evaluation process covering the complete AI tool lifecycle should be part of radiology AI development. For value assessment of health technologies, health technology assessment (HTA) is an extensively used and comprehensive method. While most aspects of value covered by HTA apply to radiology AI, additional aspects, including transparency, explainability, and robustness, are unique to radiology AI and crucial in its value assessment. Additionally, value assessment should already be included early in the design stage to determine the potential impact and subsequent requirements of the AI tool. Such early assessment should be systematic, transparent, and practical to ensure all stakeholders and value aspects are considered. Hence, early value-based development by incorporating early HTA will lead to more valuable AI tools and thus facilitate translation to clinical practice. CLINICAL RELEVANCE STATEMENT: This paper advocates for the use of early value-based assessments. These assessments promote a comprehensive evaluation on how an AI tool in development can provide value in clinical practice and thus help improve the quality of these tools and the clinical process they support. KEY POINTS: Value in radiology AI should be perceived as a comprehensive term including health technology assessment domains and AI-specific domains. Incorporation of an early health technology assessment for radiology AI during development will lead to more valuable radiology AI tools. Comprehensive and transparent value assessment of radiology AI tools is essential for their widespread adoption.

AI image analysis as the basis for risk-stratified screening.

Strand F

pubmed logopapersJun 1 2025
Artificial intelligence (AI) has emerged as a transformative tool in breast cancer screening, with two distinct applications: computer-aided cancer detection (CAD) and risk prediction. While AI CAD systems are slowly finding its way into clinical practice to assist radiologists or make independent reads, this review focuses on AI risk models, which aim to predict a patient's likelihood of being diagnosed with breast cancer within a few years after negative screening. Unlike AI CAD systems, AI risk models are mainly explored in research settings without widespread clinical adoption. This review synthesizes advances in AI-driven risk prediction models, from traditional imaging biomarkers to cutting-edge deep learning methodologies and multimodal approaches. Contributions by leading researchers are explored with critical appraisal of their methods and findings. Ethical, practical, and clinical challenges in implementing AI models are also discussed, with an emphasis on real-world applications. This review concludes by proposing future directions to optimize the adoption of AI tools in breast cancer screening and improve equity and outcomes for diverse populations.

"Advances in biomarker discovery and diagnostics for alzheimer's disease".

Bhatia V, Chandel A, Minhas Y, Kushawaha SK

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by intracellular neurofibrillary tangles with tau protein and extracellular β-amyloid plaques. Early and accurate diagnosis is crucial for effective treatment and management. The purpose of this review is to investigate new technologies that improve diagnostic accuracy while looking at the current diagnostic criteria for AD, such as clinical evaluations, cognitive testing, and biomarker-based techniques. A thorough review of the literature was done in order to assess both conventional and contemporary diagnostic methods. Multimodal strategies integrating clinical, imaging, and biochemical evaluations were emphasised. The promise of current developments in biomarker discovery was also examined, including mass spectrometry and artificial intelligence. Current diagnostic approaches include cerebrospinal fluid (CSF) biomarkers, imaging tools (MRI, PET), cognitive tests, and new blood-based markers. Integrating these technologies into multimodal diagnostic procedures enhances diagnostic accuracy and distinguishes dementia from other conditions. New technologies that hold promise for improving biomarker identification and diagnostic reliability include mass spectrometry and artificial intelligence. Advancements in AD diagnostics underscore the need for accessible, minimally invasive, and cost-effective techniques to facilitate early detection and intervention. The integration of novel technologies with traditional methods may significantly enhance the accuracy and feasibility of AD diagnosis.

Advances and current research status of early diagnosis for gallbladder cancer.

He JJ, Xiong WL, Sun WQ, Pan QY, Xie LT, Jiang TA

pubmed logopapersJun 1 2025
Gallbladder cancer (GBC) is the most common malignant tumor in the biliary system, characterized by high malignancy, aggressiveness, and poor prognosis. Early diagnosis holds paramount importance in ameliorating therapeutic outcomes. Presently, the clinical diagnosis of GBC primarily relies on clinical-radiological-pathological approach. However, there remains a potential for missed diagnosis and misdiagnose in the realm of clinical practice. We firstly analyzed the blood-based biomarkers, such as carcinoembryonic antigen and carbohydrate antigen 19-9. Subsequently, we evaluated the diagnostic performance of various imaging modalities, including ultrasound (US), endoscopic ultrasound (EUS), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT) and pathological examination, emphasizing their strengths and limitations in detecting early-stage GBC. Furthermore, we explored the potential of emerging technologies, particularly artificial intelligence (AI) and liquid biopsy, to revolutionize GBC diagnosis. AI algorithms have demonstrated improved image analysis capabilities, while liquid biopsy offers the promise of non-invasive and real-time monitoring. However, the translation of these advancements into clinical practice necessitates further validation and standardization. The review highlighted the advantages and limitations of current diagnostic approaches and underscored the need for innovative strategies to enhance diagnostic accuracy of GBC. In addition, we emphasized the importance of multidisciplinary collaboration to improve early diagnosis of GBC and ultimately patient outcomes. This review endeavoured to impart fresh perspectives and insights into the early diagnosis of GBC.

Diffusion Models in Low-Level Vision: A Survey.

He C, Shen Y, Fang C, Xiao F, Tang L, Zhang Y, Zuo W, Guo Z, Li X

pubmed logopapersJun 1 2025
Deep generative models have gained considerable attention in low-level vision tasks due to their powerful generative capabilities. Among these, diffusion model-based approaches, which employ a forward diffusion process to degrade an image and a reverse denoising process for image generation, have become particularly prominent for producing high-quality, diverse samples with intricate texture details. Despite their widespread success in low-level vision, there remains a lack of a comprehensive, insightful survey that synthesizes and organizes the advances in diffusion model-based techniques. To address this gap, this paper presents the first comprehensive review focused on denoising diffusion models applied to low-level vision tasks, covering both theoretical and practical contributions. We outline three general diffusion modeling frameworks and explore their connections with other popular deep generative models, establishing a solid theoretical foundation for subsequent analysis. We then categorize diffusion models used in low-level vision tasks from multiple perspectives, considering both the underlying framework and the target application. Beyond natural image processing, we also summarize diffusion models applied to other low-level vision domains, including medical imaging, remote sensing, and video processing. Additionally, we provide an overview of widely used benchmarks and evaluation metrics in low-level vision tasks. Our review includes an extensive evaluation of diffusion model-based techniques across six representative tasks, with both quantitative and qualitative analysis. Finally, we highlight the limitations of current diffusion models and propose four promising directions for future research. This comprehensive review aims to foster a deeper understanding of the role of denoising diffusion models in low-level vision.

Incorporating radiomic MRI models for presurgical response assessment in patients with early breast cancer undergoing neoadjuvant systemic therapy: Collaborative insights from breast oncologists and radiologists.

Gaudio M, Vatteroni G, De Sanctis R, Gerosa R, Benvenuti C, Canzian J, Jacobs F, Saltalamacchia G, Rizzo G, Pedrazzoli P, Santoro A, Bernardi D, Zambelli A

pubmed logopapersJun 1 2025
The assessment of neoadjuvant treatment's response is critical for selecting the most suitable therapeutic options for patients with breast cancer to reduce the need for invasive local therapies. Breast magnetic resonance imaging (MRI) is so far one of the most accurate approaches for assessing pathological complete response, although this is limited by the qualitative and subjective nature of radiologists' assessment, often making it insufficient for deciding whether to forgo additional locoregional therapy measures. To increase the accuracy and prediction of radiomic MRI with the aid of machine learning models and deep learning methods, as part of artificial intelligence, have been used to analyse the different subtypes of breast cancer and the specific changes observed before and after therapy. This review discusses recent advancements in radiomic MRI models for presurgical response assessment for patients with early breast cancer receiving preoperative treatments, with a focus on their implications for clinical practice.

American College of Veterinary Radiology and European College of Veterinary Diagnostic Imaging position statement on artificial intelligence.

Appleby RB, Difazio M, Cassel N, Hennessey R, Basran PS

pubmed logopapersJun 1 2025
The American College of Veterinary Radiology (ACVR) and the European College of Veterinary Diagnostic Imaging (ECVDI) recognize the transformative potential of AI in veterinary diagnostic imaging and radiation oncology. This position statement outlines the guiding principles for the ethical development and integration of AI technologies to ensure patient safety and clinical effectiveness. Artificial intelligence systems must adhere to good machine learning practices, emphasizing transparency, error reporting, and the involvement of clinical experts throughout development. These tools should also include robust mechanisms for secure patient data handling and postimplementation monitoring. The position highlights the critical importance of maintaining a veterinarian in the loop, preferably a board-certified radiologist or radiation oncologist, to interpret AI outputs and safeguard diagnostic quality. Currently, no commercially available AI products for veterinary diagnostic imaging meet the required standards for transparency, validation, or safety. The ACVR and ECVDI advocate for rigorous peer-reviewed research, unbiased third-party evaluations, and interdisciplinary collaboration to establish evidence-based benchmarks for AI applications. Additionally, the statement calls for enhanced education on AI for veterinary professionals, from foundational training in curricula to continuing education for practitioners. Veterinarians are encouraged to disclose AI usage to pet owners and provide alternative diagnostic options as needed. Regulatory bodies should establish guidelines to prevent misuse and protect the profession and patients. The ACVR and ECVDI stress the need for a cautious, informed approach to AI adoption, ensuring these technologies augment, rather than compromise, veterinary care.

A scoping review on the integration of artificial intelligence in point-of-care ultrasound: Current clinical applications.

Kim J, Maranna S, Watson C, Parange N

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is used increasingly in point-of-care ultrasound (POCUS). However, the true role, utility, advantages, and limitations of AI tools in POCUS have been poorly understood. to conduct a scoping review on the current literature of AI in POCUS to identify (1) how AI is being applied in POCUS, and (2) how AI in POCUS could be utilized in clinical settings. The review followed the JBI scoping review methodology. A search strategy was conducted in Medline, Embase, Emcare, Scopus, Web of Science, Google Scholar, and AI POCUS manufacturer websites. Selection criteria, evidence screening, and selection were performed in Covidence. Data extraction and analysis were performed on Microsoft Excel by the primary investigator and confirmed by the secondary investigators. Thirty-three papers were included. AI POCUS on the cardiopulmonary region was the most prominent in the literature. AI was most frequently used to automatically measure biometry using POCUS images. AI POCUS was most used in acute settings. However, novel applications in non-acute and low-resource settings were also explored. AI had the potential to increase POCUS accessibility and usability, expedited care and management, and had a reasonably high diagnostic accuracy in limited applications such as measurement of Left Ventricular Ejection Fraction, Inferior Vena Cava Collapsibility Index, Left-Ventricular Outflow Tract Velocity Time Integral and identifying B-lines of the lung. However, AI could not interpret poor images, underperformed compared to standard-of-care diagnostic methods, and was less effective in patients with specific disease states, such as severe illnesses that limit POCUS image acquisition. This review uncovered the applications of AI in POCUS and the advantages and limitations of AI POCUS in different clinical settings. Future research in the field must first establish the diagnostic accuracy of AI POCUS tools and explore their clinical utility through clinical trials.

Brain tumor segmentation with deep learning: Current approaches and future perspectives.

Verma A, Yadav AK

pubmed logopapersJun 1 2025
Accurate brain tumor segmentation from MRI images is critical in the medical industry, directly impacts the efficacy of diagnostic and treatment plans. Accurate segmentation of tumor region can be challenging, especially when noise and abnormalities are present. This research provides a systematic review of automatic brain tumor segmentation techniques, with a specific focus on the design of network architectures. The review categorizes existing methods into unsupervised and supervised learning techniques, as well as machine learning and deep learning approaches within supervised techniques. Deep learning techniques are thoroughly reviewed, with a particular focus on CNN-based, U-Net-based, transfer learning-based, transformer-based, and hybrid transformer-based methods. This survey encompasses a broad spectrum of automatic segmentation methodologies, from traditional machine learning approaches to advanced deep learning frameworks. It provides an in-depth comparison of performance metrics, model efficiency, and robustness across multiple datasets, particularly the BraTS dataset. The study further examines multi-modal MRI imaging and its influence on segmentation accuracy, addressing domain adaptation, class imbalance, and generalization challenges. The analysis highlights the current challenges in Computer-aided Diagnostic (CAD) systems, examining how different models and imaging sequences impact performance. Recent advancements in deep learning, especially the widespread use of U-Net architectures, have significantly enhanced medical image segmentation. This review critically evaluates these developments, focusing the iterative improvements in U-Net models that have driven progress in brain tumor segmentation. Furthermore, it explores various techniques for improving U-Net performance for medical applications, focussing on its potential for improving diagnostic and treatment planning procedures. The efficiency of these automated segmentation approaches is rigorously evaluated using the BraTS dataset, a benchmark dataset, part of the annual Multimodal Brain Tumor Segmentation Challenge (MICCAI). This evaluation provides insights into the current state-of-the-art and identifies key areas for future research and development.

Generative adversarial networks in medical image reconstruction: A systematic literature review.

Hussain J, Båth M, Ivarsson J

pubmed logopapersJun 1 2025
Recent advancements in generative adversarial networks (GANs) have demonstrated substantial potential in medical image processing. Despite this progress, reconstructing images from incomplete data remains a challenge, impacting image quality. This systematic literature review explores the use of GANs in enhancing and reconstructing medical imaging data. A document survey of computing literature was conducted using the ACM Digital Library to identify relevant articles from journals and conference proceedings using keyword combinations, such as "generative adversarial networks or generative adversarial network," "medical image or medical imaging," and "image reconstruction." Across the reviewed articles, there were 122 datasets used in 175 instances, 89 top metrics employed 335 times, 10 different tasks with a total count of 173, 31 distinct organs featured in 119 instances, and 18 modalities utilized in 121 instances, collectively depicting significant utilization of GANs in medical imaging. The adaptability and efficacy of GANs were showcased across diverse medical tasks, organs, and modalities, utilizing top public as well as private/synthetic datasets for disease diagnosis, including the identification of conditions like cancer in different anatomical regions. The study emphasized GAN's increasing integration and adaptability in diverse radiology modalities, showcasing their transformative impact on diagnostic techniques, including cross-modality tasks. The intricate interplay between network size, batch size, and loss function refinement significantly impacts GAN's performance, although challenges in training persist. The study underscores GANs as dynamic tools shaping medical imaging, contributing significantly to image quality, training methodologies, and overall medical advancements, positioning them as substantial components driving medical advancements.
Page 15 of 21210 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.