Deep Learning Approach for Biomedical Image Classification.
Authors
Affiliations (2)
Affiliations (2)
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India. [email protected].
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India.
Abstract
Biomedical image classification is of paramount importance in enhancing diagnostic precision and improving patient outcomes across diverse medical disciplines. In recent years, the advent of deep learning methodologies has significantly transformed this domain by facilitating notable advancements in image analysis and classification endeavors. This paper provides a thorough overview of the application of deep learning techniques in biomedical image classification, encompassing various types of healthcare data, including medical images derived from modalities such as mammography, histopathology, and radiology. A detailed discourse on deep learning architectures, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and advanced models such as generative adversarial networks (GANs), is presented. Additionally, we delineate the distinctions between supervised, unsupervised, and reinforcement learning approaches, along with their respective roles within the context of biomedical imaging. This study systematically investigates 50 deep learning methodologies employed in the healthcare sector, elucidating their effectiveness in various tasks, including disease detection, image segmentation, and classification. It particularly emphasizes models that have been trained on publicly available datasets, thereby highlighting the significant role of open-access data in fostering advancements in AI-driven healthcare innovations. Furthermore, this review accentuates the transformative potential of deep learning in the realm of biomedical image analysis and delineates potential avenues for future research within this rapidly evolving field.