Sort by:
Page 145 of 3993984 results

Performance of Machine Learning in Diagnosing KRAS (Kirsten Rat Sarcoma) Mutations in Colorectal Cancer: Systematic Review and Meta-Analysis.

Chen K, Qu Y, Han Y, Li Y, Gao H, Zheng D

pubmed logopapersJul 18 2025
With the widespread application of machine learning (ML) in the diagnosis and treatment of colorectal cancer (CRC), some studies have investigated the use of ML techniques for the diagnosis of KRAS (Kirsten rat sarcoma) mutation. Nevertheless, there is scarce evidence from evidence-based medicine to substantiate its efficacy. Our study was carried out to systematically review the performance of ML models developed using different modeling approaches, in diagnosing KRAS mutations in CRC. We aim to offer evidence-based foundations for the development and enhancement of future intelligent diagnostic tools. PubMed, Cochrane Library, Embase, and Web of Science were systematically retrieved, with the search cutoff date set to December 22, 2024. The encompassed studies are publicly published research papers that use ML to diagnose KRAS gene mutations in CRC. The risk of bias in the encompassed models was evaluated via the PROBAST (Prediction Model Risk of Bias Assessment Tool). A meta-analysis of the model's concordance index (c-index) was performed, and a bivariate mixed-effects model was used to summarize sensitivity and specificity based on diagnostic contingency tables. A total of 43 studies involving 10,888 patients were included. The modeling variables were derived from clinical characteristics, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography, and pathological histology. In the validation cohort, for the ML model developed based on CT radiomic features, the c-index, sensitivity, and specificity were 0.87 (95% CI 0.84-0.90), 0.85 (95% CI 0.80-0.89), and 0.83 (95% CI 0.73-0.89), respectively. For the model developed using MRI radiomic features, the c-index, sensitivity, and specificity were 0.77 (95% CI 0.71-0.83), 0.78 (95% CI 0.72-0.83), and 0.73 (95% CI 0.63-0.81), respectively. For the ML model developed based on positron emission tomography/computed tomography radiomic features, the c-index, sensitivity, and specificity were 0.84 (95% CI 0.77-0.90), 0.73, and 0.83, respectively. Notably, the deep learning (DL) model based on pathological images demonstrated a c-index, sensitivity, and specificity of 0.96 (95% CI 0.94-0.98), 0.83 (95% CI 0.72-0.91), and 0.87 (95% CI 0.77-0.92), respectively. The DL model MRI-based model showed a c-index of 0.93 (95% CI 0.90-0.96), sensitivity of 0.85 (95% CI 0.75-0.91), and specificity of 0.83 (95% CI 0.77-0.88). ML is highly accurate in diagnosing KRAS mutations in CRC, and DL models based on MRI and pathological images exhibit particularly strong diagnosis accuracy. More broadly applicable DL-based diagnostic tools may be developed in the future. However, the clinical application of DL models remains relatively limited at present. Therefore, future research should focus on increasing sample sizes, improving model architectures, and developing more advanced DL models to facilitate the creation of highly efficient intelligent diagnostic tools for KRAS mutation diagnosis in CRC.

SegMamba-V2: Long-range Sequential Modeling Mamba For General 3D Medical Image Segmentation.

Xing Z, Ye T, Yang Y, Cai D, Gai B, Wu XJ, Gao F, Zhu L

pubmed logopapersJul 18 2025
The Transformer architecture has demonstrated remarkable results in 3D medical image segmentation due to its capability of modeling global relationships. However, it poses a significant computational burden when processing high-dimensional medical images. Mamba, as a State Space Model (SSM), has recently emerged as a notable approach for modeling long-range dependencies in sequential data. Although a substantial amount of Mamba-based research has focused on natural language and 2D image processing, few studies explore the capability of Mamba on 3D medical images. In this paper, we propose SegMamba-V2, a novel 3D medical image segmentation model, to effectively capture long-range dependencies within whole-volume features at each scale. To achieve this goal, we first devise a hierarchical scale downsampling strategy to enhance the receptive field and mitigate information loss during downsampling. Furthermore, we design a novel tri-orientated spatial Mamba block that extends the global dependency modeling process from one plane to three orthogonal planes to improve feature representation capability. Moreover, we collect and annotate a large-scale dataset (named CRC-2000) with fine-grained categories to facilitate benchmarking evaluation in 3D colorectal cancer (CRC) segmentation. We evaluate the effectiveness of our SegMamba-V2 on CRC-2000 and three other large-scale 3D medical image segmentation datasets, covering various modalities, organs, and segmentation targets. Experimental results demonstrate that our Segmamba-V2 outperforms state-of-the-art methods by a significant margin, which indicates the universality and effectiveness of the proposed model on 3D medical image segmentation tasks. The code for SegMamba-V2 is publicly available at: https://github.com/ge-xing/SegMamba-V2.

Diagnostic Performance of Artificial Intelligence in Detecting and Distinguishing Pancreatic Ductal Adenocarcinoma via Computed Tomography: A Systematic Review and Meta-Analysis.

Harandi H, Gouravani M, Alikarami S, Shahrabi Farahani M, Ghavam M, Mohammadi S, Salehi MA, Reynolds S, Dehghani Firouzabadi F, Huda F

pubmed logopapersJul 18 2025
We conducted a systematic review and meta-analysis in diagnostic performance of studies that tried to use artificial intelligence (AI) algorithms in detecting pancreatic ductal adenocarcinoma (PDAC) and distinguishing them from other types of pancreatic lesions. We systematically searched for studies on pancreatic lesions and AI from January 2014 to May 2024. Data were extracted and a meta-analysis was performed using contingency tables and a random-effects model to calculate pooled sensitivity and specificity. Quality assessment was done using modified TRIPOD and PROBAST tools. We included 26 studies in this systematic review, with 22 studies chosen for meta-analysis. The evaluation of AI algorithms' performance in internal validation exhibited a pooled sensitivity of 93% (95% confidence interval [CI], 90 to 95) and specificity of 95% (95% CI, 92 to 97). Additionally, externally validated AI algorithms demonstrated a combined sensitivity of 89% (95% CI, 85 to 92) and specificity of 91% (95% CI, 85 to 95). Subgroup analysis indicated that diagnostic performance differed by comparator group, image contrast, segmentation technique, and algorithm type, with contrast-enhanced imaging and specific AI models (e.g., random forest for sensitivity and CNN for specificity) demonstrating superior accuracy. Although the potential biases should be further addressed, results of this systematic review and meta-analysis showed that AI models have the potential to be incorporated in clinical settings for the detection of smaller tumors and underpinning early signs of PDAC.

Deep learning-based automatic detection of pancreatic ductal adenocarcinoma ≤ 2 cm with high-resolution computed tomography: impact of the combination of tumor mass detection and indirect indicator evaluation.

Ozawa M, Sone M, Hijioka S, Hara H, Wakatsuki Y, Ishihara T, Hattori C, Hirano R, Ambo S, Esaki M, Kusumoto M, Matsui Y

pubmed logopapersJul 18 2025
Detecting small pancreatic ductal adenocarcinomas (PDAC) is challenging owing to their difficulty in being identified as distinct tumor masses. This study assesses the diagnostic performance of a three-dimensional convolutional neural network for the automatic detection of small PDAC using both automatic tumor mass detection and indirect indicator evaluation. High-resolution contrast-enhanced computed tomography (CT) scans from 181 patients diagnosed with PDAC (diameter ≤ 2 cm) between January 2018 and December 2023 were analyzed. The D/P ratio, which is the cross-sectional area of the MPD to that of the pancreatic parenchyma, was identified as an indirect indicator. A total of 204 patient data sets including 104 normal controls were analyzed for automatic tumor mass detection and D/P ratio evaluation. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were evaluated to detect tumor mass. The sensitivity of PDAC detection was compared with that of the software and radiologists, and tumor localization accuracy was validated against endoscopic ultrasonography (EUS) findings. The sensitivity, specificity, PPV, and NPV for tumor mass detection were 77.0%, 76.0%, 75.5%, and 77.5%, respectively; for D/P ratio detection, 87.0%, 94.2%, 93.5%, and 88.3%, respectively; and for combined tumor mass and D/P ratio detections, 96.0%, 70.2%, 75.6%, and 94.8%, respectively. No significant difference was observed between the software's sensitivity and that of the radiologist's report (software, 96.0%; radiologist, 96.0%; p = 1). The concordance rate between software findings and EUS was 96.0%. Combining indirect indicator evaluation with tumor mass detection may improve small PDAC detection accuracy.

Deep learning reconstruction enhances image quality in contrast-enhanced CT venography for deep vein thrombosis.

Asari Y, Yasaka K, Kurashima J, Katayama A, Kurokawa M, Abe O

pubmed logopapersJul 18 2025
This study aimed to evaluate and compare the diagnostic performance and image quality of deep learning reconstruction (DLR) with hybrid iterative reconstruction (Hybrid IR) and filtered back projection (FBP) in contrast-enhanced CT venography for deep vein thrombosis (DVT). A retrospective analysis was conducted on 51 patients who underwent lower limb CT venography, including 20 with DVT lesions and 31 without DVT lesions. CT images were reconstructed using DLR, Hybrid IR, and FBP. Quantitative image quality metrics, such as contrast-to-noise ratio (CNR) and image noise, were measured. Three radiologists independently assessed DVT lesion detection, depiction of DVT lesions and normal structures, subjective image noise, artifacts, and overall image quality using scoring systems. Diagnostic performance was evaluated using sensitivity and area under the receiver operating characteristic curve (AUC). The paired t-test and Wilcoxon signed-rank test compared the results for continuous variables and ordinal scales, respectively, between DLR and Hybrid IR as well as between DLR and FBP. DLR significantly improved CNR and reduced image noise compared to Hybrid IR and FBP (p < 0.001). AUC and sensitivity for DVT detection were not statistically different across reconstruction methods. Two readers reported improved lesion visualization with DLR. DLR was also rated superior in image quality, normal structure depiction, and noise suppression by all readers (p < 0.001). DLR enhances image quality and anatomical clarity in CT venography. These findings support the utility of DLR in improving diagnostic confidence and image interpretability in DVT assessment.

Deep learning reconstruction for improving image quality of pediatric abdomen MRI using a 3D T1 fast spoiled gradient echo acquisition.

Zucker EJ, Milshteyn E, Machado-Rivas FA, Tsai LL, Roberts NT, Guidon A, Gee MS, Victoria T

pubmed logopapersJul 18 2025
Deep learning (DL) reconstructions have shown utility for improving image quality of abdominal MRI in adult patients, but a paucity of literature exists in children. To compare image quality between three-dimensional fast spoiled gradient echo (SPGR) abdominal MRI acquisitions reconstructed conventionally and using a prototype method based on a commercial DL algorithm in a pediatric cohort. Pediatric patients (age < 18 years) who underwent abdominal MRI from 10/2023-3/2024 including gadolinium-enhanced accelerated 3D SPGR 2-point Dixon acquisitions (LAVA-Flex, GE HealthCare) were identified. Images were retrospectively generated using a prototype reconstruction method leveraging a commercial deep learning algorithm (AIR™ Recon DL, GE HealthCare) with the 75% noise reduction setting. For each case/reconstruction, three radiologists independently scored DL and non-DL image quality (overall and of selected structures) on a 5-point Likert scale (1-nondiagnostic, 5-excellent) and indicated reconstruction preference. The signal-to-noise ratio (SNR) and mean number of edges (inverse correlate of image sharpness) were also quantified. Image quality metrics and preferences were compared using Wilcoxon signed-rank, Fisher exact, and paired t-tests. Interobserver agreement was evaluated with the Kendall rank correlation coefficient (W). The final cohort consisted of 38 patients with mean ± standard deviation age of 8.6 ± 5.7 years, 23 males. Mean image quality scores for evaluated structures ranged from 3.8 ± 1.1 to 4.6 ± 0.6 in the DL group, compared to 3.1 ± 1.1 to 3.9 ± 0.6 in the non-DL group (all P < 0.001). All radiologists preferred DL in most cases (32-37/38, P < 0.001). There were a 2.3-fold increase in SNR and a 3.9% reduction in the mean number of edges in DL compared to non-DL images (both P < 0.001). In all scored anatomic structures except the spine and non-DL adrenals, interobserver agreement was moderate to substantial (W = 0.41-0.74, all P < 0.01). In a broad spectrum of pediatric patients undergoing contrast-enhanced Dixon abdominal MRI acquisitions, the prototype deep learning reconstruction is generally preferred to conventional methods with improved image quality across a wide range of structures.

Using Convolutional Neural Networks for the Classification of Suboptimal Chest Radiographs.

Liu EH, Carrion D, Badawy MK

pubmed logopapersJul 18 2025
Chest X-rays (CXR) rank among the most conducted X-ray examinations. They often require repeat imaging due to inadequate quality, leading to increased radiation exposure and delays in patient care and diagnosis. This research assesses the efficacy of DenseNet121 and YOLOv8 neural networks in detecting suboptimal CXRs, which may minimise delays and enhance patient outcomes. The study included 3587 patients with a median age of 67 (0-102). It utilised an initial dataset comprising 10,000 CXRs randomly divided into a training subset (4000 optimal and 4000 suboptimal) and a validation subset (400 optimal and 400 suboptimal). The test subset (25 optimal and 25 suboptimal) was curated from the remaining images to provide adequate variation. Neural networks DenseNet121 and YOLOv8 were chosen due to their capabilities in image classification. DenseNet121 is a robust, well-tested model in the medical industry with high accuracy in object recognition. YOLOv8 is a cutting-edge commercial model targeted at all industries. Their performance was assessed via the area under the receiver operating curve (AUROC) and compared to radiologist classification, utilising the chi-squared test. DenseNet121 attained an AUROC of 0.97, while YOLOv8 recorded a score of 0.95, indicating a strong capability in differentiating between optimal and suboptimal CXRs. The alignment between radiologists and models exhibited variability, partly due to the lack of clinical indications. However, the performance was not statistically significant. Both AI models effectively classified chest X-ray quality, demonstrating the potential for providing radiographers with feedback to improve image quality. Notably, this was the first study to include both PA and lateral CXRs as well as paediatric cases and the first to evaluate YOLOv8 for this application.

Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

Zhang D, Shen M, Zhang L, He X, Huang X

pubmed logopapersJul 18 2025
This study sought to develop a radiomics model capable of predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) based on dual-sequence magnetic resonance imaging(MRI) of diffusion-weighted imaging (DWI) and dynamic contrast enhancement (DCE) data. The interpretability of the resultant model was probed with the SHAP (Shapley Additive Explanations) method. Established inclusion/exclusion criteria were used to retrospectively compile MRI and matching clinical data from 183 patients with pathologically confirmed IBC from our hospital evaluated between June 2021 and December 2023. All of these patients had undergone plain and enhanced MRI scans prior to treatment. These patients were separated according to their pathological biopsy results into those with ALNM (n = 107) and those without ALNM (n = 76). These patients were then randomized into training (n = 128) and testing (n = 55) cohorts at a 7:3 ratio. Optimal radiomics features were selected from the extracted data. The random forest method was used to establish three predictive models (DWI, DCE, and combined DWI + DCE sequence models). Area under the curve (AUC) values for receiver operating characteristic (ROC) curves were utilized to assess model performance. The DeLong test was utilized to compare model predictive efficacy. Model discrimination was assessed based on the integrated discrimination improvement (IDI) method. Decision curves revealed net clinical benefits for each of these models. The SHAP method was used to achieve the best model interpretability. Clinicopathological characteristics (age, menopausal status, molecular subtypes, and estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki-67 status) were comparable when comparing the ALNM and non-ALNM groups as well as the training and testing cohorts (P > 0.05). AUC values for the DWI, DCE, and combined models in the training cohort were 0.793, 0.774, and 0.864, respectively, with corresponding values of 0.728, 0.760, and 0.859 in the testing cohort. The predictive efficacy of the DWI and combined models was found to differ significantly according to the DeLong test, as did the predictive efficacy of the DCE and combined models in the training groups (P < 0.05), while no other significant differences were noted in model performance (P > 0.05). IDI results indicated that the combined model offered predictive power levels that were 13.5% (P < 0.05) and 10.2% (P < 0.05) higher than those for the respective DWI and DCE models. In a decision curve analysis, the combined model offered a net clinical benefit over the DCE model. The combined dual-sequence MRI-based radiomics model constructed herein and the supporting interpretability analyses can aid in the prediction of the ALNM status of IBC patients, helping to guide clinical decision-making in these cases.

Accuracy and Time Efficiency of Artificial Intelligence-Driven Tooth Segmentation on CBCT Images: A Validation Study Using Two Implant Planning Software Programs.

Ntovas P, Sirirattanagool P, Asavanamuang P, Jain S, Tavelli L, Revilla-León M, Galarraga-Vinueza ME

pubmed logopapersJul 18 2025
To assess the accuracy and time efficiency of manual versus artificial intelligence (AI)-driven tooth segmentation on cone-beam computed tomography (CBCT) images, using AI tools integrated within implant planning software, and to evaluate the impact of artifacts, dental arch, tooth type, and region. Fourteen patients who underwent CBCT scans were randomly selected for this study. Using the acquired datasets, 67 extracted teeth were segmented using one manual and two AI-driven tools. The segmentation time for each method was recorded. The extracted teeth were scanned with an intraoral scanner to serve as the reference. The virtual models generated by each segmentation method were superimposed with the surface scan models to calculate volumetric discrepancies. The discrepancy between the evaluated AI-driven and manual segmentation methods ranged from 0.10 to 0.98 mm, with a mean RMS of 0.27 (0.11) mm. Manual segmentation resulted in less RMS deviation compared to both AI-driven methods (CDX; BSB) (p < 0.05). Significant differences were observed between all investigated segmentation methods, both for the overall tooth area and each region, with the apical portion of the root showing the lowest accuracy (p < 0.05). Tooth type did not have a significant effect on segmentation (p > 0.05). Both AI-driven segmentation methods reduced segmentation time compared to manual segmentation (p < 0.05). AI-driven segmentation can generate reliable virtual 3D tooth models, with accuracy comparable to that of manual segmentation performed by experienced clinicians, while also significantly improving time efficiency. To further enhance accuracy in cases involving restoration artifacts, continued development and optimization of AI-driven tooth segmentation models are necessary.

AI-Driven segmentation and morphogeometric profiling of epicardial adipose tissue in type 2 diabetes.

Feng F, Hasaballa AI, Long T, Sun X, Fernandez J, Carlhäll CJ, Zhao J

pubmed logopapersJul 18 2025
Epicardial adipose tissue (EAT) is associated with cardiometabolic risk in type 2 diabetes (T2D), but its spatial distribution and structural alterations remain understudied. We aim to develop a shape-aware, AI-based method for automated segmentation and morphogeometric analysis of EAT in T2D. A total of 90 participants (45 with T2D and 45 age-, sex-matched controls) underwent cardiac 3D Dixon MRI, enrolled between 2014 and 2018 as part of the sub-study of the Swedish SCAPIS cohort. We developed EAT-Seg, a multi-modal deep learning model incorporating signed distance maps (SDMs) for shape-aware segmentation. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), the 95% Hausdorff distance (HD95), and the average symmetric surface distance (ASSD). Statistical shape analysis combined with partial least squares discriminant analysis (PLS-DA) was applied to point cloud representations of EAT to capture latent spatial variations between groups. Morphogeometric features, including volume, 3D local thickness map, elongation and fragmentation index, were extracted and correlated with PLS-DA latent variables using Pearson correlation. Features with high-correlation were identified as key differentiators and evaluated using a Random Forest classifier. EAT-Seg achieved a DSC of 0.881, a HD95 of 3.213 mm, and an ASSD of 0.602 mm. Statistical shape analysis revealed spatial distribution differences in EAT between T2D and control groups. Morphogeometric feature analysis identified volume and thickness gradient-related features as key discriminators (r > 0.8, P < 0.05). Random Forest classification achieved an AUC of 0.703. This AI-based framework enables accurate segmentation for structurally complex EAT and reveals key morphogeometric differences associated with T2D, supporting its potential as a biomarker for cardiometabolic risk assessment.
Page 145 of 3993984 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.