Sort by:
Page 14 of 15147 results

Update on the detection of frailty in older adults: a multicenter cohort machine learning-based study protocol.

Fernández-Carnero S, Martínez-Pozas O, Pecos-Martín D, Pardo-Gómez A, Cuenca-Zaldívar JN, Sánchez-Romero EA

pubmed logopapersMay 21 2025
This study aims to investigate the relationship between muscle activation variables assessed via ultrasound and the comprehensive assessment of geriatric patients, as well as to analyze ultrasound images to determine their correlation with morbimortality factors in frail patients. The present cohort study will be conducted in 500 older adults diagnosed with frailty. A multicenter study will be conducted among the day care centers and nursing homes. This will be achieved through the evaluation of frail older adults via instrumental and functional tests, along with specific ultrasound images to study sarcopenia and nutrition, followed by a detailed analysis of the correlation between all collected variables. This study aims to investigate the correlation between ultrasound-assessed muscle activation variables and the overall health of geriatric patients. It addresses the limitations of previous research by including a large sample size of 500 patients and measuring various muscle parameters beyond thickness. Additionally, it aims to analyze ultrasound images to identify markers associated with higher risk of complications in frail patients. The study involves frail older adults undergoing functional tests and specific ultrasound examinations. A comprehensive analysis of functional, ultrasound, and nutritional variables will be conducted to understand their correlation with overall health and risk of complications in frail older patients. The study was approved by the Research Ethics Committee of the Hospital Universitario Puerta de Hierro, Madrid, Spain (Act nº 18/2023). In addition, the study was registered with https://clinicaltrials.gov/ (NCT06218121).

The effect of medical explanations from large language models on diagnostic decisions in radiology

Spitzer, P., Hendriks, D., Rudolph, J., Schläger, S., Ricke, J., Kühl, N., Hoppe, B., Feuerriegel, S.

medrxiv logopreprintMay 18 2025
Large language models (LLMs) are increasingly used by physicians for diagnostic support. A key advantage of LLMs is the ability to generate explanations that can help physicians understand the reasoning behind a diagnosis. However, the best-suited format for LLM-generated explanations remains unclear. In this large-scale study, we examined the effect of different formats for LLM explanations on clinical decision-making. For this, we conducted a randomized experiment with radiologists reviewing patient cases with radiological images (N = 2020 assessments). Participants received either no LLM support (control group) or were supported by one of three LLM-generated explanations: (1) a standard output providing the diagnosis without explanation; (2) a differential diagnosis comparing multiple possible diagnoses; or (3) a chain-of-thought explanation offering a detailed reasoning process for the diagnosis. We find that the format of explanations significantly influences diagnostic accuracy. The chain-of-thought explanations yielded the best performance, improving the diagnostic accuracy by 12.2% compared to the control condition without LLM support (P = 0.001). The chain-of-thought explanations are also superior to the standard output without explanation (+7.2%; P = 0.040) and the differential diagnosis format (+9.7%; P = 0.004). We further assessed the robustness of these findings across case difficulty and different physician backgrounds such as general vs. specialized radiologists. Evidently, explaining the reasoning for a diagnosis helps physicians to identify and correct potential errors in LLM predictions and thus improve overall decisions. Altogether, the results highlight the importance of how explanations in medical LLMs are generated to maximize their utility in clinical practice. By designing explanations to support the reasoning processes of physicians, LLMs can improve diagnostic performance and, ultimately, patient outcomes.

Accelerated deep learning-based function assessment in cardiovascular magnetic resonance.

De Santis D, Fanelli F, Pugliese L, Bona GG, Polidori T, Santangeli C, Polici M, Del Gaudio A, Tremamunno G, Zerunian M, Laghi A, Caruso D

pubmed logopapersMay 17 2025
To evaluate diagnostic accuracy and image quality of deep learning (DL) cine sequences for LV and RV parameters compared to conventional balanced steady-state free precession (bSSFP) cine sequences in cardiovascular magnetic resonance (CMR). From January to April 2024, patients with clinically indicated CMR were prospectively included. LV and RV were segmented from short-axis bSSFP and DL cine sequences. LV and RV end-diastolic volume (EDV), end-systolic volume (EDV), stroke volume (SV), ejection fraction, and LV end-diastolic mass were calculated. The acquisition time of both sequences was registered. Results were compared with paired-samples t test or Wilcoxon signed-rank test. Agreement between DL cine and bSSFP was assessed using Bland-Altman plots. Image quality was graded by two readers based on blood-to-myocardium contrast, endocardial edge definition, and motion artifacts, using a 5-point Likert scale (1 = insufficient quality; 5 = excellent quality). Sixty-two patients were included (mean age: 47 ± 17 years, 41 men). No significant differences between DL cine and bSSFP were found for all LV and RV parameters (P ≥ .176). DL cine was significantly faster (1.35 ± .55 m vs 2.83 ± .79 m; P < .001). The agreement between DL cine and bSSFP was strong, with bias ranging from 45 to 1.75% for LV and from - 0.38 to 2.43% for RV. Among LV parameters, the highest agreement was obtained for ESV and SV, which fell within the acceptable limit of agreement (LOA) in 84% of cases. EDV obtained the highest agreement among RV parameters, falling within the acceptable LOA in 90% of cases. Overall image quality was comparable (median: 5, IQR: 4-5; P = .330), while endocardial edge definition of DL cine (median: 4, IQR: 4-5) was lower than bSSFP (median: 5, IQR: 4-5; P = .002). DL cine allows fast and accurate quantification of LV and RV parameters and comparable image quality with conventional bSSFP.

Evaluation of synthetic images derived from a neural network in pediatric brain magnetic resonance imaging.

Nagaraj UD, Meineke J, Sriwastwa A, Tkach JA, Leach JL, Doneva M

pubmed logopapersMay 17 2025
Synthetic MRI (SyMRI) is a technique used to estimate tissue properties and generate multiple MR sequence contrasts from a single acquisition. However, image quality can be suboptimal. To evaluate a neural network approach using artificial intelligence-based direct contrast synthesis (AI-DCS) of the multi-contrast weighted images to improve image quality. This prospective, IRB approved study enrolled 50 pediatric patients undergoing clinical brain MRI. In addition to the standard of care (SOC) clinical protocol, 2D multi-delay multi-echo (MDME) sequence was obtained. SOC 3D T1-weighted (T1W), 2D T2-weighted (T2W) and 2D T2W fluid-attenuated inversion recovery (FLAIR) images from 35 patients were used to train a neural network generating synthetic T1W, T2W, and FLAIR images. Quantitative analysis of grey matter (GM) and white matter (WM) apparent signal to noise (aSNR) and grey-white matter (GWM) apparent contrast to noise (aCNR) ratios was performed. 8 patients were evaluated. When compared to SyMRI, T1W AI-DCS had better overall image quality, reduced noise/artifacts, and better subjective SNR in 100 % (16/16) of evaluations. When compared to SyMRI, T2W AI-DCS overall image quality and diagnostic confidence was better in 93.8 % (15/16) and 87.5 % (14/16) of evaluations, respectively. When compared to SyMRI, FLAIR AI-DCS was better in 93.8 % (15/16) of evaluations in overall image quality and in 100 % (16/16) of evaluations for noise/artifacts and subjective SNR. Quantitative analysis revealed higher WM aSNR compared with SyMRI (p < 0.05) for T1W, T2W and FLAIR. AI-DCS demonstrates better overall image quality than SyMRI on T1W, T2W and FLAIR.

Artificial intelligence-guided distal radius fracture detection on plain radiographs in comparison with human raters.

Ramadanov N, John P, Hable R, Schreyer AG, Shabo S, Prill R, Salzmann M

pubmed logopapersMay 16 2025
The aim of this study was to compare the performance of artificial intelligence (AI) in detecting distal radius fractures (DRFs) on plain radiographs with the performance of human raters. We retrospectively analysed all wrist radiographs taken in our hospital since the introduction of AI-guided fracture detection from 11 September 2023 to 10 September 2024. The ground truth was defined by the radiological report of a board-certified radiologist based solely on conventional radiographs. The following parameters were calculated: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), accuracy (%), Cohen's Kappa coefficient, F1 score, sensitivity (%), specificity (%), Youden Index (J Statistic). In total 1145 plain radiographs of the wrist were taken between 11 September 2023 and 10 September 2024. The mean age of the included patients was 46.6 years (± 27.3), ranging from 2 to 99 years and 59.0% were female. According to the ground truth, of the 556 anteroposterior (AP) radiographs, 225 cases (40.5%) had a DRF, and of the 589 lateral view radiographs, 240 cases (40.7%) had a DRF. The AI system showed the following results on AP radiographs: accuracy (%): 95.90; Cohen's Kappa: 0.913; F1 score: 0.947; sensitivity (%): 92.02; specificity (%): 98.45; Youden Index: 90.47. The orthopedic surgeon achieved a sensitivity of 91.5%, specificity of 97.8%, an overall accuracy of 95.1%, F1 score of 0.943, and Cohen's kappa of 0.901. These results were comparable to those of the AI model. AI-guided detection of DRF demonstrated diagnostic performance nearly identical to that of an experienced orthopedic surgeon across all key metrics. The marginal differences observed in sensitivity and specificity suggest that AI can reliably support clinical fracture assessment based solely on conventional radiographs.

Artificial intelligence algorithm improves radiologists' bone age assessment accuracy artificial intelligence algorithm improves radiologists' bone age assessment accuracy.

Chang TY, Chou TY, Jen IA, Yuh YS

pubmed logopapersMay 15 2025
Artificial intelligence (AI) algorithms can provide rapid and precise radiographic bone age (BA) assessment. This study assessed the effects of an AI algorithm on the BA assessment performance of radiologists, and evaluated how automation bias could affect radiologists. In this prospective randomized crossover study, six radiologists with varying levels of experience (senior, mi-level, and junior) assessed cases from a test set of 200 standard BA radiographs. The test set was equally divided into two subsets: datasets A and B. Each radiologist assessed BA independently without AI assistance (A- B-) and with AI assistance (A+ B+). We used the mean of assessments made by two experts as the ground truth for accuracy assessment; subsequently, we calculated the mean absolute difference (MAD) between the radiologists' BA predictions and ground-truth BA and evaluated the proportion of estimates for which the MAD exceeded one year. Additionally, we compared the radiologists' performance under conditions of early AI assistance with their performance under conditions of delayed AI assistance; the radiologists were allowed to reject AI interpretations. The overall accuracy of senior, mid-level, and junior radiologists improved significantly with AI assistance than without AI assistance (MAD: 0.74 vs. 0.46 years, p < 0.001; proportion of assessments for which MAD exceeded 1 year: 24.0% vs. 8.4%, p < 0.001). The proportion of improved BA predictions with AI assistance (16.8%) was significantly higher than that of less accurate predictions with AI assistance (2.3%; p < 0.001). No consistent timing effect was observed between conditions of early and delayed AI assistance. Most disagreements between radiologists and AI occurred over images for patients aged ≤8 years. Senior radiologists had more disagreements than other radiologists. The AI algorithm improved the BA assessment accuracy of radiologists with varying experience levels. Automation bias was prone to affect less experienced radiologists.

Novel AI Guided Non-Expert Compression Ultrasound DVT Diagnostic Pathway May Reduce Vascular Laboratory Venous Testing <sup>†</sup>.

Avgerinos E, Spiliopoulos S, Psachoulia F, Yfantis A, Plakas G, Grigoriadis S, Speranza G, Kakisis Y

pubmed logopapersMay 14 2025
Ultrasonography and D-dimer testing are established modalities for evaluating potential lower extremity deep venous thrombosis (DVT). The ThinkSono Guidance system is an AI based software allowing non-ultrasound trained providers to perform compression ultrasounds for evaluation by remote interpreters. This study evaluates its clinical utilisation and potential reduction of venous duplexes and waiting times. Patients with suspected DVTs were prospectively recruited through the institution's emergency department. Patients underwent an AI guided two region proximal DVT compression examination by non-ultrasound trained providers using the ThinkSono Guidance system and D-dimer testing. Ultrasound images remotely reviewed by the on call radiologist were rated for diagnostic quality; all images of sufficient quality were assessed as either "Compressible/no proximal DVT" or "Inadequate imaging/possible DVT". All patients assessed as "compressible" with negative D-dimers were discharged. All other patients were sent for a venous duplex scan. Time to diagnosis, sensitivity, and specificity of ThinkSono Guidance against D-dimers and full duplex scans were calculated. Fifty three patients (average age 56 ± 18 years, 45% females) were scanned with ThinkSono Guidance by one of three non-ultrasound trained providers. All scans were of diagnostic quality. ThinkSono Guidance with radiologist review yielded 45 negative DVT diagnoses (85%). Seventeen of these with negative D-dimers were discharged (32%), 28 required duplex ultrasound testing per trial protocol (23 due to positive D-dimers, five due to unavailability of D-dimer). All of these duplexes were negative (100% sensitivity). Eight patients were suspected to have DVT by the reviewing radiologist, and duplex confirmed DVT in six patients (96% ThinkSono Guidance specificity, 36% D-dimer specificity). ThinkSono Guidance scans averaged 6.75 minutes for scan and review. The median time from scan initiation to review was 37.5 minutes. This suggests a significant proportion of patients with suspected DVT could safely avoid duplex ultrasound and D-dimer testing using the ThinkSono system, setting the basis for a novel AI assisted diagnostic pathway.

The utility of low-dose pre-operative CT of ovarian tumor with artificial intelligence iterative reconstruction for diagnosing peritoneal invasion, lymph node and hepatic metastasis.

Cai X, Han J, Zhou W, Yang F, Liu J, Wang Q, Li R

pubmed logopapersMay 13 2025
Diagnosis of peritoneal invasion, lymph node metastasis, and hepatic metastasis is crucial in the decision-making process of ovarian tumor treatment. This study aimed to test the feasibility of low-dose abdominopelvic CT with an artificial intelligence iterative reconstruction (AIIR) for diagnosing peritoneal invasion, lymph node metastasis, and hepatic metastasis in pre-operative imaging of ovarian tumor. This study prospectively enrolled 88 patients with pathology-confirmed ovarian tumors, where routine-dose CT at portal venous phase (120 kVp/ref. 200 mAs) with hybrid iterative reconstruction (HIR) was followed by a low-dose scan (120 kVp/ref. 40 mAs) with AIIR. The performance of diagnosing peritoneal invasion and lymph node metastasis was assessed using receiver operating characteristic (ROC) analysis with pathological results serving as the reference. The hepatic parenchymal metastases were diagnosed and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured. The perihepatic structures were also scored on the clarity of porta hepatis, gallbladder fossa and intersegmental fissure. The effective dose of low-dose CT was 79.8% lower than that of routine-dose scan (2.64 ± 0.46 vs. 13.04 ± 2.25 mSv, p < 0.001). The low-dose AIIR showed similar area under the ROC curve (AUC) with routine-dose HIR for diagnosing both peritoneal invasion (0.961 vs. 0.960, p = 0.734) and lymph node metastasis (0.711 vs. 0.715, p = 0.355). The 10 hepatic parenchymal metastases were all accurately diagnosed on the two image sets. The low-dose AIIR exhibited higher SNR and CNR for hepatic parenchymal metastases and superior clarity for perihepatic structures. In low-dose pre-operative CT of ovarian tumor, AIIR delivers similar diagnostic accuracy for peritoneal invasion, lymph node metastasis, and hepatic metastasis, as compared to routine-dose abdominopelvic CT. It is feasible and diagnostically safe to apply up to 80% dose reduction in CT imaging of ovarian tumor by using AIIR.

Application of artificial intelligence-based three dimensional digital reconstruction technology in precision treatment of complex total hip arthroplasty.

Zheng Q, She H, Zhang Y, Zhao P, Liu X, Xiang B

pubmed logopapersMay 10 2025
To evaluate the predictive ability of AI HIP in determining the size and position of prostheses during complex total hip arthroplasty (THA). Additionally, it investigates the factors influencing the accuracy of preoperative planning predictions. From April 2021 to December 2023, patients with complex hip joint diseases were divided into the AI preoperative planning group (n = 29) and the X-ray preoperative planning group (n = 27). Postoperative X-rays were used to measure acetabular anteversion angle, abduction angle, tip-to-sternum distance, intraoperative duration, blood loss, planning time, postoperative Harris Hip Scores (at 2 weeks, 3 months, and 6 months), and visual analogue scale (VAS) pain scores (at 2 weeks and at final follow-up) to analyze clinical outcomes. On the acetabular side, the accuracy of AI preoperative planning was higher compared to X-ray preoperative planning (75.9% vs. 44.4%, P = 0.016). On the femoral side, AI preoperative planning also showed higher accuracy compared to X-ray preoperative planning (85.2% vs. 59.3%, P = 0.033). The AI preoperative planning group showed superior outcomes in terms of reducing bilateral leg length discrepancy (LLD), decreasing operative time and intraoperative blood loss, early postoperative recovery, and pain control compared to the X-ray preoperative planning group (P < 0.05). No significant differences were observed between the groups regarding bilateral femoral offset (FO) differences, bilateral combined offset (CO) differences, abduction angle, anteversion angle, or tip-to-sternum distance. Factors such as gender, age, affected side, comorbidities, body mass index (BMI) classification, bone mineral density did not affect the prediction accuracy of AI HIP preoperative planning. Artificial intelligence-based 3D planning can be effectively utilized for preoperative planning in complex THA. Compared to X-ray templating, AI demonstrates superior accuracy in prosthesis measurement and provides significant clinical benefits, particularly in early postoperative recovery.

Dynamic AI Ultrasound-Assisted Diagnosis System to Reduce Unnecessary Fine Needle Aspiration of Thyroid Nodules.

Li F, Tao S, Ji M, Liu L, Qin Z, Yang X, Wu R, Zhan J

pubmed logopapersMay 9 2025
This study aims to compare the diagnostic efficiency of the American College of Radiology-Thyroid Imaging, Reporting, and Data System (ACR-TIRADS), fine-needle aspiration (FNA) cytopathology alone, and the dynamic artificial intelligence (AI) diagnostic system. A total of 1035 patients from three hospitals were included in the study. Of these, 590 were from the retrospective dataset and 445 cases were from the prospective dataset. The diagnostic accuracy of the dynamic AI system in the thyroid nodules was evaluated in comparison to the gold standard of postoperative pathology. The sensitivity, specificity, ROC, and diagnostic differences in the κ-factor relative to the gold standard were analyzed for the AI system and the FNA. The dynamic AI diagnostic system showed good diagnostic stability in different ages and sexes and nodules of different sizes. The diagnostic AUC of the dynamic AI system showed a significant improvement from 0.89 to 0.93 compared to ACR TI-RADS. Compared to that of FNA cytopathology, the diagnostic efficacy of the dynamic AI system was found to be no statistical difference in both the retrospective cohort and the prospective cohort. The dynamic AI diagnostic system enhances the accuracy of ACR TI-RADS-based diagnoses and has the potential to replace biopsies, thus reducing the necessity for invasive procedures in patients.
Page 14 of 15147 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.