Sort by:
Page 14 of 25249 results

DeepSeek-assisted LI-RADS classification: AI-driven precision in hepatocellular carcinoma diagnosis.

Zhang J, Liu J, Guo M, Zhang X, Xiao W, Chen F

pubmed logopapersJun 24 2025
The clinical utility of the DeepSeek-V3 (DSV3) model in enhancing the accuracy of Liver Imaging Reporting and Data System (LI-RADS, LR) classification remains underexplored. This study aimed to evaluate the diagnostic performance of DSV3 in LR classifications compared to radiologists with varying levels of experience and to assess its potential as a decision-support tool in clinical practice. A dual-phase retrospective-prospective study analyzed 426 liver lesions (300 retrospective, 126 prospective) in high-risk HCC patients who underwent Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Three radiologists (one junior, two seniors) independently classified lesions using LR v2018 criteria, while DSV3 analyzed unstructured radiology reports to generate corresponding classifications. In the prospective cohort, DSV3 processed inputs in both Chinese and English to evaluate language impact. Performance was compared using chi-square test or Fisher's exact test, with pathology as the gold standard. In the retrospective cohort, DSV3 significantly outperformed junior radiologists in diagnostically challenging categories: LR-3 (17.8% vs. 39.7%, p<0.05), LR-4 (80.4% vs. 46.2%, p<0.05), and LR-5 (86.2% vs. 66.7%, p<0.05), while showing comparable accuracy in LR-1 (90.8% vs. 88.7%), LR-2 (11.9% vs. 25.6%), and LR-M (79.5% vs. 62.1%) classifications (all p>0.05). Prospective validation confirmed these findings, with DSV3 demonstrating superior performance for LR-3 (13.3% vs. 60.0%), LR-4 (93.3% vs. 66.7%), and LR-5 (93.5% vs. 67.7%) compared to junior radiologists (all p<0.05). Notably, DSV3 achieved diagnostic parity with senior radiologists across all categories (p>0.05) and maintained consistent performance between Chinese and English inputs. The DSV3 model effectively improves diagnostic accuracy of LR-3 to LR-5 classifications among junior radiologists . Its language-independent performance and ability to match senior-level expertise suggest strong potential for clinical implementation to standardize HCC diagnosis and optimize treatment decisions.

Diagnostic Performance of Universal versus Stratified Computer-Aided Detection Thresholds for Chest X-Ray-Based Tuberculosis Screening

Sung, J., Kitonsa, P. J., Nalutaaya, A., Isooba, D., Birabwa, S., Ndyabayunga, K., Okura, R., Magezi, J., Nantale, D., Mugabi, I., Nakiiza, V., Dowdy, D. W., Katamba, A., Kendall, E. A.

medrxiv logopreprintJun 24 2025
BackgroundComputer-aided detection (CAD) software analyzes chest X-rays for features suggestive of tuberculosis (TB) and provides a numeric abnormality score. However, estimates of CAD accuracy for TB screening are hindered by the lack of confirmatory data among people with lower CAD scores, including those without symptoms. Additionally, the appropriate CAD score thresholds for obtaining further testing may vary according to population and client characteristics. MethodsWe screened for TB in Ugandan individuals aged [&ge;]15 years using portable chest X-rays with CAD (qXR v3). Participants were offered screening regardless of their symptoms. Those with X-ray scores above a threshold of 0.1 (range, 0 - 1) were asked to provide sputum for Xpert Ultra testing. We estimated the diagnostic accuracy of CAD for detecting Xpert-positive TB when using the same threshold for all individuals (under different assumptions about TB prevalence among people with X-ray scores <0.1), and compared this estimate to age- and/or sex-stratified approaches. FindingsOf 52,835 participants screened for TB using CAD, 8,949 (16.9%) had X-ray scores [&ge;]0.1. Of 7,219 participants with valid Xpert Ultra results, 382 (5.3%) were Xpert-positive, including 81 with trace results. Assuming 0.1% of participants with X-ray scores <0.1 would have been Xpert-positive if tested, qXR had an estimated AUC of 0.920 (95% confidence interval 0.898-0.941) for Xpert-positive TB. Stratifying CAD thresholds according to age and sex improved accuracy; for example, at 96.1% specificity, estimated sensitivity was 75.0% for a universal threshold (of [&ge;]0.65) versus 76.9% for thresholds stratified by age and sex (p=0.046). InterpretationThe accuracy of CAD for TB screening among all screening participants, including those without symptoms or abnormal chest X-rays, is higher than previously estimated. Stratifying CAD thresholds based on client characteristics such as age and sex could further improve accuracy, enabling a more effective and personalized approach to TB screening. FundingNational Institutes of Health Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe World Health Organization (WHO) has endorsed computer-aided detection (CAD) as a screening tool for tuberculosis (TB), but the appropriate CAD score that triggers further diagnostic evaluation for tuberculosis varies by population. The WHO recommends determining the appropriate CAD threshold for specific settings and population and considering unique thresholds for specific populations, including older age groups, among whom CAD may perform poorly. We performed a PubMed literature search for articles published until September 9, 2024, using the search terms "tuberculosis" AND ("computer-aided detection" OR "computer aided detection" OR "CAD" OR "computer-aided reading" OR "computer aided reading" OR "artificial intelligence"), which resulted in 704 articles. Among them, we identified studies that evaluated the performance of CAD for tuberculosis screening and additionally reviewed relevant references. Most prior studies reported area under the curves (AUC) ranging from 0.76 to 0.88 but limited their evaluations to individuals with symptoms or abnormal chest X-rays. Some prior studies identified subgroups (including older individuals and people with prior TB) among whom CAD had lower-than-average AUCs, and authors discussed how the prevalence of such characteristics could affect the optimal value of a population-wide CAD threshold; however, none estimated the accuracy that could be gained with adjusting CAD thresholds between individuals based on personal characteristics. Added value of this studyIn this study, all consenting individuals in a high-prevalence setting were offered chest X-ray screening, regardless of symptoms, if they were [&ge;]15 years old, not pregnant, and not on TB treatment. A very low CAD score cutoff (qXR v3 score of 0.1 on a 0-1 scale) was used to select individuals for confirmatory sputum molecular testing, enabling the detection of radiographically mild forms of TB and facilitating comparisons of diagnostic accuracy at different CAD thresholds. With this more expansive, symptom-neutral evaluation of CAD, we estimated an AUC of 0.920, and we found that the qXR v3 threshold needed to decrease to under 0.1 to meet the WHO target product profile goal of [&ge;]90% sensitivity and [&ge;]70% specificity. Compared to using the same thresholds for all participants, adjusting CAD thresholds by age and sex strata resulted in a 1 to 2% increase in sensitivity without affecting specificity. Implications of all the available evidenceTo obtain high sensitivity with CAD screening in high-prevalence settings, low score thresholds may be needed. However, countries with a high burden of TB often do not have sufficient resources to test all individuals above a low threshold. In such settings, adjusting CAD thresholds based on individual characteristics associated with TB prevalence (e.g., male sex) and those associated with false-positive X-ray results (e.g., old age) can potentially improve the efficiency of TB screening programs.

Evaluation of deep learning reconstruction in accelerated knee MRI: comparison of visual and diagnostic performance metrics.

Wen S, Xu Y, Yang G, Huang F, Zeng Z

pubmed logopapersJun 23 2025
To investigate the clinical value of deep learning reconstruction (DLR) in accelerated magnetic resonance imaging (MRI) of the knee and compare its visual quality and diagnostic performance metrics with conventional fast spin-echo T2-weighted imaging with fat suppression (FSE-T2WI-FS). This prospective study included 116 patients with knee injuries. All patients underwent both conventional FSE-T2WI-FS and DLR-accelerated FSE-T2WI-FS scans on a 1.5‑T MRI scanner. Two radiologists independently evaluated overall image quality, artifacts, and image sharpness using a 5-point Likert scale. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of lesion regions were measured. Subjective scores were compared using the Wilcoxon signed-rank test, SNR/CNR differences were analyzed via paired t tests, and inter-reader agreement was assessed using Cohen's kappa. The accelerated sequences with DLR achieved a 36 % reduction in total scan time compared to conventional sequences (p < 0.05), shortening acquisition from 9 min 50 s to 6 min 15 s. Moreover, DLR demonstrated superior artifact suppression and enhanced quantitative image quality, with significantly higher SNR and CNR (p < 0.001). Despite these improvements, diagnostic equivalence was maintained: No significant differences were observed in overall image quality, sharpness (p > 0.05), or lesion detection rates. Inter-reader agreement was good (κ> 0.75), further validating the clinical reliability of the DLR technique. Using DLR-accelerated FSE-T2WI-FS reduces scan time, suppresses artifacts, and improves quantitative image quality while maintaining diagnostic accuracy comparable to conventional sequences. This technology holds promise for optimizing clinical workflows in MRI of the knee.

Cost-effectiveness of a novel AI technology to quantify coronary inflammation and cardiovascular risk in patients undergoing routine coronary computed tomography angiography.

Tsiachristas A, Chan K, Wahome E, Kearns B, Patel P, Lyasheva M, Syed N, Fry S, Halborg T, West H, Nicol E, Adlam D, Modi B, Kardos A, Greenwood JP, Sabharwal N, De Maria GL, Munir S, McAlindon E, Sohan Y, Tomlins P, Siddique M, Shirodaria C, Blankstein R, Desai M, Neubauer S, Channon KM, Deanfield J, Akehurst R, Antoniades C

pubmed logopapersJun 23 2025
Coronary computed tomography angiography (CCTA) is a first-line investigation for chest pain in patients with suspected obstructive coronary artery disease (CAD). However, many acute cardiac events occur in the absence of obstructive CAD. We assessed the lifetime cost-effectiveness of integrating a novel artificial intelligence-enhanced image analysis algorithm (AI-Risk) that stratifies the risk of cardiac events by quantifying coronary inflammation, combined with the extent of coronary artery plaque and clinical risk factors, by analysing images from routine CCTA. A hybrid decision-tree with population cohort Markov model was developed from 3393 consecutive patients who underwent routine CCTA for suspected obstructive CAD and followed up for major adverse cardiac events over a median (interquartile range) of 7.7(6.4-9.1) years. In a prospective real-world evaluation survey of 744 consecutive patients undergoing CCTA for chest pain investigation, the availability of AI-Risk assessment led to treatment initiation or intensification in 45% of patients. In a further prospective study of 1214 consecutive patients with extensive guidelines recommended cardiovascular risk profiling, AI-Risk stratification led to treatment initiation or intensification in 39% of patients beyond the current clinical guideline recommendations. Treatment guided by AI-Risk modelled over a lifetime horizon could lead to fewer cardiac events (relative reductions of 11%, 4%, 4%, and 12% for myocardial infarction, ischaemic stroke, heart failure, and cardiac death, respectively). Implementing AI-Risk Classification in routine interpretation of CCTA is highly likely to be cost-effective (incremental cost-effectiveness ratio £1371-3244), both in scenarios of current guideline compliance, or when applied only to patients without obstructive CAD. Compared with standard care, the addition of AI-Risk assessment in routine CCTA interpretation is cost-effective, by refining risk-guided medical management.

Ultrasound placental image texture analysis using artificial intelligence and deep learning models to predict hypertension in pregnancy.

Arora U, Vigneshwar P, Sai MK, Yadav R, Sengupta D, Kumar M

pubmed logopapersJun 21 2025
This study considers the application of ultrasound placental image texture analysis for the prediction of hypertensive disorders of pregnancy (HDP) using deep learning (DL) algorithm. In this prospective observational study, placental ultrasound images were taken serially at 11-14 weeks (T1), 20-24 weeks (T2), and 28-32 weeks (T3). Pregnant women with blood pressure at or above 140/90 mmHg on two occasions 4 h apart were considered to have HDP. The image data of women with HDP were compared with those with a normal outcome using DL techniques such as convolutional neural networks (CNN), transfer learning, and a Vision Transformer (ViT) with a TabNet classifier. The accuracy and the Cohen kappa scores of the different DL techniques were compared. A total of 600/1008 (59.5%) subjects had a normal outcome, and 143/1008 (14.2%) had HDP; the reminder, 265/1008 (26.3%), had other adverse outcomes. In the basic CNN model, the accuracy was 81.6% for T1, 80% for T2, and 82.8% for T3. Using the Efficient Net B0 transfer learning model, the accuracy was 87.7%, 85.3%, and 90.3% for T1, T2, and T3, respectively. Using a TabNet classifier with a ViT, the accuracy and area under the receiver operating characteristic curve scores were 91.4% and 0.915 for T1, 90.2% and 0.904 for T2, and 90.3% and 0.907 for T3. The sensitivity and specificity for HDP prediction using ViT were 89.1% and 91.7% for T1, 86.6% and 93.7% for T2, and 85.6% and 94.6% for T3. Ultrasound placental image texture analysis using DL could differentiate women with a normal outcome and those with HDP with excellent accuracy and could open new avenues for research in this field.

Independent histological validation of MR-derived radio-pathomic maps of tumor cell density using image-guided biopsies in human brain tumors.

Nocera G, Sanvito F, Yao J, Oshima S, Bobholz SA, Teraishi A, Raymond C, Patel K, Everson RG, Liau LM, Connelly J, Castellano A, Mortini P, Salamon N, Cloughesy TF, LaViolette PS, Ellingson BM

pubmed logopapersJun 21 2025
In brain gliomas, non-invasive biomarkers reflecting tumor cellularity would be useful to guide supramarginal resections and to plan stereotactic biopsies. We aim to validate a previously-trained machine learning algorithm that generates cellularity prediction maps (CPM) from multiparametric MRI data to an independent, retrospective external cohort of gliomas undergoing image-guided biopsies, and to compare the performance of CPM and diffusion MRI apparent diffusion coefficient (ADC) in predicting cellularity. A cohort of patients with treatment-naïve or recurrent gliomas were prospectively studied. All patients underwent pre-surgical MRI according to the standardized brain tumor imaging protocol. The surgical sampling site was planned based on image-guided biopsy targets and tissue was stained with hematoxylin-eosin for cell density count. The correlation between MRI-derived CPM values and histological cellularity, and between ADC and histological cellularity, was evaluated both assuming independent observations and accounting for non-independent observations. Sixty-six samples from twenty-seven patients were collected. Thirteen patients had treatment-naïve tumors and fourteen had recurrent lesions. CPM value accurately predicted histological cellularity in treatment-naïve patients (b = 1.4, R<sup>2</sup> = 0.2, p = 0.009, rho = 0.41, p = 0.016, RMSE = 1503 cell/mm<sup>2</sup>), but not in the recurrent sub-cohort. Similarly, ADC values showed a significant association with histological cellularity only in treatment-naive patients (b = 1.3, R<sup>2</sup> = 0.22, p = 0.007; rho = -0.37, p = 0.03), not statistically different from the CPM correlation. These findings were confirmed with statistical tests accounting for non-independent observations. MRI-derived machine learning generated cellularity prediction maps (CPM) enabled a non-invasive evaluation of tumor cellularity in treatment-naïve glioma patients, although CPM did not clearly outperform ADC alone in this cohort.

Concordance between single-slice abdominal computed tomography-based and bioelectrical impedance-based analysis of body composition in a prospective study.

Fehrenbach U, Hosse C, Wienbrandt W, Walter-Rittel T, Kolck J, Auer TA, Blüthner E, Tacke F, Beetz NL, Geisel D

pubmed logopapersJun 19 2025
Body composition analysis (BCA) is a recognized indicator of patient frailty. Apart from the established bioelectrical impedance analysis (BIA), computed tomography (CT)-derived BCA is being increasingly explored. The aim of this prospective study was to directly compare BCA obtained from BIA and CT. A total of 210 consecutive patients scheduled for CT, including a high proportion of cancer patients, were prospectively enrolled. Immediately prior to the CT scan, all patients underwent BIA. CT-based BCA was performed using a single-slice AI tool for automated detection and segmentation at the level of the third lumbar vertebra (L3). BIA-based parameters, body fat mass (BFM<sub>BIA</sub>) and skeletal muscle mass (SMM<sub>BIA</sub>), CT-based parameters, subcutaneous and visceral adipose tissue area (SATA<sub>CT</sub> and VATA<sub>CT</sub>) and total abdominal muscle area (TAMA<sub>CT</sub>) were determined. Indices were calculated by normalizing the BIA and CT parameters to patient's weight (body fat percentage (BFP<sub>BIA</sub>) and body fat index (BFI<sub>CT</sub>)) or height (skeletal muscle index (SMI<sub>BIA</sub>) and lumbar skeletal muscle index (LSMI<sub>CT</sub>)). Parameters representing fat, BFM<sub>BIA</sub> and SATA<sub>CT</sub> + VATA<sub>CT</sub>, and parameters representing muscle tissue, SMM<sub>BIA</sub> and TAMA<sub>CT</sub>, showed strong correlations in female (fat: r = 0.95; muscle: r = 0.72; p < 0.001) and male (fat: r = 0.91; muscle: r = 0.71; p < 0.001) patients. Linear regression analysis was statistically significant (fat: R<sup>2</sup> = 0.73 (female) and 0.74 (male); muscle: R<sup>2</sup> = 0.56 (female) and 0.56 (male); p < 0.001), showing that BFI<sub>CT</sub> and LSMI<sub>CT</sub> allowed prediction of BFP<sub>BIA</sub> and SMI<sub>BIA</sub> for both sexes. CT-based BCA strongly correlates with BIA results and yields quantitative results for BFP and SMI comparable to the existing gold standard. Question CT-based body composition analysis (BCA) is moving more and more into clinical focus, but validation against established methods is lacking. Findings Fully automated CT-based BCA correlates very strongly with guideline-accepted bioelectrical impedance analysis (BIA). Clinical relevance BCA is currently moving further into clinical focus to improve assessment of patient frailty and individualize therapies accordingly. Comparability with established BIA strengthens the value of CT-based BCA and supports its translation into clinical routine.

Qualitative and quantitative analysis of functional cardiac MRI using a novel compressed SENSE sequence with artificial intelligence image reconstruction.

Konstantin K, Christian LM, Lenhard P, Thomas S, Robert T, Luisa LI, David M, Matej G, Kristina S, Philip NC

pubmed logopapersJun 19 2025
To evaluate the feasibility of combining Compressed SENSE (CS) with a newly developed deep learning-based algorithm (CS-AI) using a Convolutional Neural Network to accelerate balanced steady-state free precession (bSSFP)-sequences for cardiac magnetic resonance imaging (MRI). 30 healthy volunteers were examined prospectively with a 3 T MRI scanner. We acquired CINE bSSFP sequences for short axis (SA, multi-breath-hold) and four-chamber (4CH)-view of the heart. For each sequence, four different CS accelerations and CS-AI reconstructions with three different denoising parameters, CS-AI medium, CS-AI strong, and CS-AI complete, were used. Cardiac left ventricular (LV) function (i.e., ejection fraction, end-diastolic volume, end-systolic volume, and LV mass) was analyzed using the SA sequences in every CS factor and each AI level. Two readers, blinded to the acceleration and denoising levels, evaluated all sequences regarding image quality and artifacts using a 5-point Likert scale. Friedman and Dunn's multiple comparison tests were used for qualitative evaluation, ANOVA and Tukey Kramer test for quantitative metrics. Scan time could be decreased up to 57 % for the SA-Sequences and up to 56 % for the 4CH-Sequences compared to the clinically established sequences consisting of SA-CS3 and 4CH-CS2,5 (SA-CS3: 112 s vs. SA-CS6: 48 s; 4CH-CS2,5: 9 s vs. 4CH-CS5: 4 s, p < 0.001). LV-functional analysis was not compromised by using accelerated MRI sequences combined with CS-AI reconstructions (all p > 0.05). The image quality loss and artifact increase accompanying increasing acceleration levels could be entirely compensated by CS-AI post-processing, with the best results for image quality using the combination of the highest CS factor with strong AI (SA-CINE: Coef.:1.31, 95 %CI:1.05-1.58; 4CH-CINE: Coef.:1.18, 95 %CI:1.05-1.58; both p < 0.001), and with complete AI regarding the artifact score (SA-CINE: Coef.:1.33, 95 %CI:1.06-1.60; 4CH-CINE: Coef.:1.31, 95 %CI:0.86-1.77; both p < 0.001). Combining CS sequences with AI-based image reconstruction for denoising significantly decreases scan time in cardiac imaging while upholding LV functional analysis accuracy and delivering stable outcomes for image quality and artifact reduction. This integration presents a promising advancement in cardiac MRI, promising improved efficiency without compromising diagnostic quality.

Artificial Intelligence-Assisted Segmentation of Prostate Tumors and Neurovascular Bundles: Applications in Precision Surgery for Prostate Cancer.

Mei H, Yang R, Huang J, Jiao P, Liu X, Chen Z, Chen H, Zheng Q

pubmed logopapersJun 18 2025
The aim of this study was to guide prostatectomy by employing artificial intelligence for the segmentation of tumor gross tumor volume (GTV) and neurovascular bundles (NVB). The preservation and dissection of NVB differ between intrafascial and extrafascial robot-assisted radical prostatectomy (RARP), impacting postoperative urinary control. We trained the nnU-Net v2 neural network using data from 220 patients in the PI-CAI cohort for the segmentation of prostate GTV and NVB in biparametric magnetic resonance imaging (bpMRI). The model was then validated in an external cohort of 209 patients from Renmin Hospital of Wuhan University (RHWU). Utilizing three-dimensional reconstruction and point cloud analysis, we explored the spatial distribution of GTV and NVB in relation to intrafascial and extrafascial approaches. We also prospectively included 40 patients undergoing intrafascial and extrafascial RARP, applying the aforementioned procedure to classify the surgical approach. Additionally, 3D printing was employed to guide surgery, and follow-ups on short- and long-term urinary function in patients were conducted. The nnU-Net v2 neural network demonstrated precise segmentation of GTV, NVB, and prostate, achieving Dice scores of 0.5573 ± 0.0428, 0.7679 ± 0.0178, and 0.7483 ± 0.0290, respectively. By establishing the distance from GTV to NVB, we successfully predicted the surgical approach. Urinary control analysis revealed that the extrafascial approach yielded better postoperative urinary function, facilitating more refined management of patients with prostate cancer and personalized medical care. Artificial intelligence technology can accurately identify GTV and NVB in preoperative bpMRI of patients with prostate cancer and guide the choice between intrafascial and extrafascial RARP. Patients undergoing intrafascial RARP with preserved NVB demonstrate improved postoperative urinary control.

Can automation and artificial intelligence reduce echocardiography scan time and ultrasound system interaction?

Hollitt KJ, Milanese S, Joseph M, Perry R

pubmed logopapersJun 16 2025
The number of patients referred for and requiring a transthoracic echocardiogram (TTE) has increased over the years resulting in more cardiac sonographers reporting work related musculoskeletal pain. We sought to determine if a scanning protocol that replaced conventional workflows with advanced technologies such as multiplane imaging, artificial intelligence (AI) and automation could be used to optimise conventional workflows and potentially reduce ergonomic risk for cardiac sonographers. The aim was to assess whether this alternate protocol could reduce active scanning time as well as interaction with the ultrasound machine compared to a standard echocardiogram without a reduction in image quality and interpretability. Volunteer participants were recruited for a study that comprised of two TTE's with separate protocols. Both were clinically complete, but Protocol A combined automation, AI assisted acquisition and measurement, simultaneous and multiplane imaging whilst Protocol B reflected a standard scanning protocol without these additional technologies. Keystrokes were significantly reduced with the advanced protocol as compared to the typical protocol (230.9 ± 24.2 vs. 502.8 ± 56.2; difference 271.9 ± 61.3, p < 0.001). Furthermore, there was a reduction in scan time with protocol A compared to protocol B the standard TTE protocol (13.4 ± 2.3 min vs. 18.0 ± 2.6 min; difference 4.6 ± 2.9 min, p < 0.001) as well as a decrease of approximately 27% in the time the sonographers were required to reach beyond a neutral position on the ultrasound console. A TTE protocol that embraces modern technologies such as AI, automation, and multiplane imaging shows potential for a reduction in ultrasound keystrokes and scan time without a reduction in quality and interpretability. This may aid a reduction in ergonomic workload as compared to a standard TTE.
Page 14 of 25249 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.