Sort by:
Page 133 of 1621612 results

An Artificial Intelligence Model Using Diffusion Basis Spectrum Imaging Metrics Accurately Predicts Clinically Significant Prostate Cancer.

Kim EH, Jing H, Utt KL, Vetter JM, Weimholt RC, Bullock AD, Klim AP, Bergeron KA, Frankel JK, Smith ZL, Andriole GL, Song SK, Ippolito JE

pubmed logopapersJun 1 2025
Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) before biopsy and applied artificial intelligence models to these DBSI metrics to predict csPCa. Between February 2020 and March 2024, 241 patients underwent prostate MRI that included conventional and DBSI-specific sequences before prostate biopsy. We used artificial intelligence models with DBSI metrics as input classifiers and the biopsy pathology as the ground truth. The DBSI-based model was compared with available biomarkers (PSA, PSA density [PSAD], and Prostate Imaging Reporting and Data System [PI-RADS]) for risk discrimination of csPCa defined as Gleason score <u>></u> 7. The DBSI-based model was an independent predictor of csPCa (odds ratio [OR] 2.04, 95% CI 1.52-2.73, <i>P</i> < .01), as were PSAD (OR 2.02, 95% CI 1.21-3.35, <i>P</i> = .01) and PI-RADS classification (OR 4.00, 95% CI 1.37-11.6 for PI-RADS 3, <i>P</i> = .01; OR 9.67, 95% CI 2.89-32.7 for PI-RADS 4-5, <i>P</i> < .01), adjusting for age, family history, and race. Within our dataset, the DBSI-based model alone performed similarly to PSAD + PI-RADS (AUC 0.863 vs 0.859, <i>P</i> = .89), while the combination of the DBSI-based model + PI-RADS had the highest risk discrimination for csPCa (AUC 0.894, <i>P</i> < .01). A clinical strategy using the DBSI-based model for patients with PI-RADS 1-3 could have reduced biopsies by 27% while missing 2% of csPCa (compared with biopsy for all). Our DBSI-based artificial intelligence model accurately predicted csPCa on biopsy and can be combined with PI-RADS to potentially reduce unnecessary prostate biopsies.

Combining Multifrequency Magnetic Resonance Elastography With Automatic Segmentation to Assess Renal Function in Patients With Chronic Kidney Disease.

Liang Q, Lin H, Li J, Luo P, Qi R, Chen Q, Meng F, Qin H, Qu F, Zeng Y, Wang W, Lu J, Huang B, Chen Y

pubmed logopapersJun 1 2025
Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability. To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity. Prospective. A total of 179 participants consisting of 95 healthy volunteers and 84 participants with CKD. 3 T, single shot spin echo planar imaging sequence. Participants were randomly assigned into training (n = 58), validation (n = 15), and test (n = 106) sets. Test set included 47 healthy volunteers and 58 CKD participants with different stages (21 stage 1-2, 22 stage 3, and 16 stage 4-5) based on estimated glomerular filtration rate (eGFR). Shear wave speed (SWS) values from mMRE was measured using automatic segmentation constructed through the nnU-Net deep-learning network. Standard manual segmentation was created by a radiologist. In the test set, the automatically segmented renal SWS were compared between healthy volunteers and CKD subgroups, with age as a covariate. The association between SWS and eGFR was investigated in participants with CKD. Dice similarity coefficient (DSC), analysis of covariance, Pearson and Spearman correlation analyses. P < 0.05 was considered statistically significant. Mean DSCs between standard manual and automatic segmentation were 0.943, 0.901, and 0.970 for the renal cortex, medulla, and parenchyma, respectively. The automatically quantified cortical, medullary, and parenchymal SWS were significantly correlated with eGFR (r = 0.620, 0.605, and 0.640, respectively). Participants with CKD stage 1-2 exhibited significantly lower cortical SWS values compared to healthy volunteers (2.44 ± 0.16 m/second vs. 2.56 ± 0.17 m/second), after adjusting age. mMRE combined with automatic segmentation revealed abnormal renal stiffness in patients with CKD, even with mild renal impairment. The renal stiffness of patients with chronic kidney disease varies according to the function and structure of the kidney. This study integrates multifrequency magnetic resonance elastography with automated segmentation technique to assess renal stiffness in patients with chronic kidney disease. The findings indicate that this method is capable of distinguishing between patients with chronic kidney disease, including those with mild renal impairment, while simultaneously reducing the subjectivity and time required for radiologists to analyze images. This research enhances the efficiency of image processing for radiologists and assists nephrologists in detecting early-stage damage in patients with chronic kidney disease. 2 TECHNICAL EFFICACY: Stage 2.

Ultra-fast biparametric MRI in prostate cancer assessment: Diagnostic performance and image quality compared to conventional multiparametric MRI.

Pausch AM, Filleböck V, Elsner C, Rupp NJ, Eberli D, Hötker AM

pubmed logopapersJun 1 2025
To compare the diagnostic performance and image quality of a deep-learning-assisted ultra-fast biparametric MRI (bpMRI) with the conventional multiparametric MRI (mpMRI) for the diagnosis of clinically significant prostate cancer (csPCa). This prospective single-center study enrolled 123 biopsy-naïve patients undergoing conventional mpMRI and additionally ultra-fast bpMRI at 3 T between 06/2023-02/2024. Two radiologists (R1: 4 years and R2: 3 years of experience) independently assigned PI-RADS scores (PI-RADS v2.1) and assessed image quality (mPI-QUAL score) in two blinded study readouts. Weighted Cohen's Kappa (κ) was calculated to evaluate inter-reader agreement. Diagnostic performance was analyzed using clinical data and histopathological results from clinically indicated biopsies. Inter-reader agreement was good for both mpMRI (κ = 0.83) and ultra-fast bpMRI (κ = 0.87). Both readers demonstrated high sensitivity (≥94 %/≥91 %, R1/R2) and NPV (≥96 %/≥95 %) for csPCa detection using both protocols. The more experienced reader mostly showed notably higher specificity (≥77 %/≥53 %), PPV (≥62 %/≥45 %), and diagnostic accuracy (≥82 %/≥65 %) compared to the less experienced reader. There was no significant difference in the diagnostic performance of correctly identifying csPCa between both protocols (p > 0.05). The ultra-fast bpMRI protocol had significantly better image quality ratings (p < 0.001) and achieved a reduction in scan time of 80 % compared to conventional mpMRI. Deep-learning-assisted ultra-fast bpMRI protocols offer a promising alternative to conventional mpMRI for diagnosing csPCa in biopsy-naïve patients with comparable inter-reader agreement and diagnostic performance at superior image quality. However, reader experience remains essential for diagnostic performance.

Regional Cerebral Atrophy Contributes to Personalized Survival Prediction in Amyotrophic Lateral Sclerosis: A Multicentre, Machine Learning, Deformation-Based Morphometry Study.

Lajoie I, Kalra S, Dadar M

pubmed logopapersJun 1 2025
Accurate personalized survival prediction in amyotrophic lateral sclerosis is essential for effective patient care planning. This study investigates whether grey and white matter changes measured by magnetic resonance imaging can improve individual survival predictions. We analyzed data from 178 patients with amyotrophic lateral sclerosis and 166 healthy controls in the Canadian Amyotrophic Lateral Sclerosis Neuroimaging Consortium study. A voxel-wise linear mixed-effects model assessed disease-related and survival-related atrophy detected through deformation-based morphometry, controlling for age, sex, and scanner variations. Additional linear mixed-effects models explored associations between regional imaging and clinical measurements, and their associations with time to the composite outcome of death, tracheostomy, or permanent assisted ventilation. We evaluated whether incorporating imaging features alongside clinical data could improve the performance of an individual survival distribution model. Deformation-based morphometry uncovered distinct voxel-wise atrophy patterns linked to disease progression and survival, with many of these regional atrophies significantly associated with clinical manifestations of the disease. By integrating regional imaging features with clinical data, we observed a substantial enhancement in the performance of survival models across key metrics. Our analysis identified specific brain regions, such as the corpus callosum, rostral middle frontal gyrus, and thalamus, where atrophy predicted an increased risk of mortality. This study suggests that brain atrophy patterns measured by deformation-based morphometry provide valuable insights beyond clinical assessments for prognosis. It offers a more comprehensive approach to prognosis and highlights brain regions involved in disease progression and survival, potentially leading to a better understanding of amyotrophic lateral sclerosis. ANN NEUROL 2025;97:1144-1157.

Z-SSMNet: Zonal-aware Self-supervised Mesh Network for prostate cancer detection and diagnosis with Bi-parametric MRI.

Yuan Y, Ahn E, Feng D, Khadra M, Kim J

pubmed logopapersJun 1 2025
Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (PCa) management by improving efficiency and cost-effectiveness. However, current state-of-the-art methods using convolutional neural networks (CNNs) and Transformers are limited in learning in-plane and three-dimensional spatial information from anisotropic bpMRI. Their performances also depend on the availability of large, diverse, and well-annotated bpMRI datasets. To address these challenges, we propose the Zonal-aware Self-supervised Mesh Network (Z-SSMNet), which adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI in a balanced manner. We also propose a self-supervised learning (SSL) technique that effectively captures both intra-slice and inter-slice semantic information using large-scale unlabeled data. Furthermore, we constrain the network to focus on the zonal anatomical regions to improve the detection and diagnosis capability of csPCa. We conducted extensive experiments on the PI-CAI (Prostate Imaging - Cancer AI) dataset comprising 10000+ multi-center and multi-scanner data. Our Z-SSMNet excelled in both lesion-level detection (AP score of 0.633) and patient-level diagnosis (AUROC score of 0.881), securing the top position in the Open Development Phase of the PI-CAI challenge and maintained strong performance, achieving an AP score of 0.690 and an AUROC score of 0.909, and securing the second-place ranking in the Closed Testing Phase. These findings underscore the potential of AI-driven systems for csPCa diagnosis and management.

Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity.

Tan Q, Miao J, Nitschke L, Nickel MD, Lerchbaumer MH, Penzkofer T, Hofbauer S, Peters R, Hamm B, Geisel D, Wagner M, Walter-Rittel TC

pubmed logopapersJun 1 2025
Deep learning (DL) accelerated controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), provides high spatial resolution T1-weighted imaging of the upper abdomen. We aimed to investigate whether DL-CAIPIRINHA-VIBE can improve image quality, vessel conspicuity, and lesion detectability compared to a standard CAIPIRINHA-VIBE in renal imaging at 3 Tesla. In this prospective study, 50 patients with 23 solid and 45 cystic renal lesions underwent MRI with clinical MR sequences, including standard CAIPIRINHA-VIBE and DL-CAIPIRINHA-VIBE sequences in the nephrographic phase at 3 Tesla. Two experienced radiologists independently evaluated both sequences and multiplanar reconstructions (MPR) of the sagittal and coronal planes for image quality with a Likert scale ranging from 1 to 5 (5 =best). Quantitative measurements including the size of the largest lesion and renal lesion contrast ratios were evaluated. DL-CAIPIRINHA-VIBE compared to standard CAIPIRINHA-VIBE showed significantly improved overall image quality, higher scores for renal border delineation, renal sinuses, vessels, adrenal glands, reduced motion artifacts and reduced perceived noise in nephrographic phase images (all p < 0.001). DL-CAIPIRINHA-VIBE with MPR showed superior lesion conspicuity and diagnostic confidence compared to standard CAIPIRINHA-VIBE. However, DL-CAIPIRINHA-VIBE presented a more synthetic appearance and more aliasing artifacts (p < 0.023). The mean size and signal intensity of renal lesions for DL-CAIPIRINHA-VIBE showed no significant differences compared to standard CAIPIRINHA-VIBE (p > 0.9). DL-CAIPIRINHA-VIBE is well suited for kidney imaging in the nephrographic phase, provides good image quality, improved delineation of anatomic structures and renal lesions.

TTGA U-Net: Two-stage two-stream graph attention U-Net for hepatic vessel connectivity enhancement.

Zhao Z, Li W, Ding X, Sun J, Xu LX

pubmed logopapersJun 1 2025
Accurate segmentation of hepatic vessels is pivotal for guiding preoperative planning in ablation surgery utilizing CT images. While non-contrast CT images often lack observable vessels, we focus on segmenting hepatic vessels within preoperative MR images. However, the vascular structures depicted in MR images are susceptible to noise, leading to challenges in connectivity. To address this issue, we propose a two-stage two-stream graph attention U-Net (i.e., TTGA U-Net) for hepatic vessel segmentation. Specifically, the first-stage network employs a CNN or Transformer-based architecture to preliminarily locate the vessel position, followed by an improved superpixel segmentation method to generate graph structures based on the positioning results. The second-stage network extracts graph node features through two parallel branches of a graph spatial attention network (GAT) and a graph channel attention network (GCT), employing self-attention mechanisms to balance these features. The graph pooling operation is utilized to aggregate node information. Moreover, we introduce a feature fusion module instead of skip connections to merge the two graph attention features, providing additional information to the decoder effectively. We establish a novel well-annotated high-quality MR image dataset for hepatic vessel segmentation and validate the vessel connectivity enhancement network's effectiveness on this dataset and the public dataset 3D IRCADB. Experimental results demonstrate that our TTGA U-Net outperforms state-of-the-art methods, notably enhancing vessel connectivity.

Quantitative analysis of ureteral jets with dynamic magnetic resonance imaging and a deep-learning approach.

Wu M, Zeng W, Li Y, Ni C, Zhang J, Kong X, Zhang JL

pubmed logopapersJun 1 2025
To develop dynamic MRU protocol that focuses on the bladder to capture ureteral jets and to automatically estimate frequency and duration of ureteral jets from the dynamic images. Between February and July 2023, we collected 51 sets of dynamic MRU data from 5 healthy subjects. To capture the entire longitudinal trajectory of ureteral jets, we optimized orientation and thickness of the imaging slice for dynamic MRU, and developed a deep-learning method to automatically estimate frequency and duration of ureteral jets from the dynamic images. Among the 15 sets of images with different slice positioning, the positioning with slice thickness of 25 mm and orientation of 30° was optimal. Of the 36 sets of dynamic images acquired with the optimal protocol, 27 sets or 2529 images were used to train a U-Net model for automatically detecting the presence of ureteral jets. On the other 9 sets or 760 images, accuracy of the trained model was found to be 84.9 %. Based on the results of automatic detection, frequency of ureteral jet in each set of dynamic images was estimated as 8.0 ± 1.4 min<sup>-1</sup>, deviating from reference by -3.3 % ± 10.0 %; duration of each individual ureteral jet was estimated as 7.3 ± 2.8 s, deviating from reference by 2.4 % ± 32.2 %. The accumulative duration of ureteral jets estimated by the method correlated well (with coefficient of 0.936) with the bladder expansion recorded in the dynamic images. The proposed method was capable of quantitatively characterizing ureteral jets, potentially providing valuable information on functional status of ureteral peristalsis.

Predictive validity of consensus-based MRI definition of osteoarthritis plus radiographic osteoarthritis for the progression of knee osteoarthritis: A longitudinal cohort study.

Xing X, Wang Y, Zhu J, Shen Z, Cicuttini F, Jones G, Aitken D, Cai G

pubmed logopapersJun 1 2025
Our previous study showed that magnetic resonance imaging (MRI)-defined tibiofemoral osteoarthritis (MRI-OA), based on a Delphi approach, in combination with radiographic OA (ROA) had a strong predictive validity for the progression of knee OA. This study aimed to compare whether the combination using traditional prediction models was superior to the Light Gradient Boosting Machine (LightGBM) models. Data were from the Tasmanian Older Adult Cohort. A radiograph and 1.5T MRI of the right knee was performed. Tibial cartilage volume was measured at baseline, 2.6 and 10.7 years. Knee pain and function were assessed at baseline, 2.6, 5.1, and 10.7 years. Right-sided total knee replacement (TKR) were assessed over 13.5 years. The area under the curve (AUC) was applied to compare the predictive validity of logistic regression with the LightGBM algorithm. For significant imbalanced outcomes, the area under the precision-recall curve (AUC-PR) was used. 574 participants (mean 62 years, 49 ​% female) were included. Overall, the LightGBM showed a clinically acceptable predictive performance for all outcomes but TKR. For knee pain and function, LightGBM showed better predictive performance than logistic regression model (AUC: 0.731-0.912 vs 0.627-0.755). Similar results were found for tibial cartilage loss over 2.6 (AUC: 0.845 vs 0.701, p ​< ​0.001) and 10.7 years (AUC: 0.845 vs 0.753, p ​= ​0.016). For TKR, which exhibited significant class imbalance, both algorithms performed poorly (AUC-PR: 0.647 vs 0.610). Compared to logistic regression combining MRI-OA, ROA, and common covariates, LightGBM offers valuable insights that can inform early risk identification and targeted prevention strategies.

Incorporating radiomic MRI models for presurgical response assessment in patients with early breast cancer undergoing neoadjuvant systemic therapy: Collaborative insights from breast oncologists and radiologists.

Gaudio M, Vatteroni G, De Sanctis R, Gerosa R, Benvenuti C, Canzian J, Jacobs F, Saltalamacchia G, Rizzo G, Pedrazzoli P, Santoro A, Bernardi D, Zambelli A

pubmed logopapersJun 1 2025
The assessment of neoadjuvant treatment's response is critical for selecting the most suitable therapeutic options for patients with breast cancer to reduce the need for invasive local therapies. Breast magnetic resonance imaging (MRI) is so far one of the most accurate approaches for assessing pathological complete response, although this is limited by the qualitative and subjective nature of radiologists' assessment, often making it insufficient for deciding whether to forgo additional locoregional therapy measures. To increase the accuracy and prediction of radiomic MRI with the aid of machine learning models and deep learning methods, as part of artificial intelligence, have been used to analyse the different subtypes of breast cancer and the specific changes observed before and after therapy. This review discusses recent advancements in radiomic MRI models for presurgical response assessment for patients with early breast cancer receiving preoperative treatments, with a focus on their implications for clinical practice.
Page 133 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.