Ultra-fast biparametric MRI in prostate cancer assessment: Diagnostic performance and image quality compared to conventional multiparametric MRI.

Authors

Pausch AM,Filleböck V,Elsner C,Rupp NJ,Eberli D,Hötker AM

Affiliations (4)

  • Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
  • Department of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland.
  • Faculty of Medicine, University of Zurich, Switzerland.
  • Department of Urology, University Hospital Zurich, Switzerland.

Abstract

To compare the diagnostic performance and image quality of a deep-learning-assisted ultra-fast biparametric MRI (bpMRI) with the conventional multiparametric MRI (mpMRI) for the diagnosis of clinically significant prostate cancer (csPCa). This prospective single-center study enrolled 123 biopsy-naïve patients undergoing conventional mpMRI and additionally ultra-fast bpMRI at 3 T between 06/2023-02/2024. Two radiologists (R1: 4 years and R2: 3 years of experience) independently assigned PI-RADS scores (PI-RADS v2.1) and assessed image quality (mPI-QUAL score) in two blinded study readouts. Weighted Cohen's Kappa (κ) was calculated to evaluate inter-reader agreement. Diagnostic performance was analyzed using clinical data and histopathological results from clinically indicated biopsies. Inter-reader agreement was good for both mpMRI (κ = 0.83) and ultra-fast bpMRI (κ = 0.87). Both readers demonstrated high sensitivity (≥94 %/≥91 %, R1/R2) and NPV (≥96 %/≥95 %) for csPCa detection using both protocols. The more experienced reader mostly showed notably higher specificity (≥77 %/≥53 %), PPV (≥62 %/≥45 %), and diagnostic accuracy (≥82 %/≥65 %) compared to the less experienced reader. There was no significant difference in the diagnostic performance of correctly identifying csPCa between both protocols (p > 0.05). The ultra-fast bpMRI protocol had significantly better image quality ratings (p < 0.001) and achieved a reduction in scan time of 80 % compared to conventional mpMRI. Deep-learning-assisted ultra-fast bpMRI protocols offer a promising alternative to conventional mpMRI for diagnosing csPCa in biopsy-naïve patients with comparable inter-reader agreement and diagnostic performance at superior image quality. However, reader experience remains essential for diagnostic performance.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.