Sort by:
Page 132 of 2432422 results

ChestGPT: Integrating Large Language Models and Vision Transformers for Disease Detection and Localization in Chest X-Rays

Shehroz S. Khan, Petar Przulj, Ahmed Ashraf, Ali Abedi

arxiv logopreprintJul 4 2025
The global demand for radiologists is increasing rapidly due to a growing reliance on medical imaging services, while the supply of radiologists is not keeping pace. Advances in computer vision and image processing technologies present significant potential to address this gap by enhancing radiologists' capabilities and improving diagnostic accuracy. Large language models (LLMs), particularly generative pre-trained transformers (GPTs), have become the primary approach for understanding and generating textual data. In parallel, vision transformers (ViTs) have proven effective at converting visual data into a format that LLMs can process efficiently. In this paper, we present ChestGPT, a deep-learning framework that integrates the EVA ViT with the Llama 2 LLM to classify diseases and localize regions of interest in chest X-ray images. The ViT converts X-ray images into tokens, which are then fed, together with engineered prompts, into the LLM, enabling joint classification and localization of diseases. This approach incorporates transfer learning techniques to enhance both explainability and performance. The proposed method achieved strong global disease classification performance on the VinDr-CXR dataset, with an F1 score of 0.76, and successfully localized pathologies by generating bounding boxes around the regions of interest. We also outline several task-specific prompts, in addition to general-purpose prompts, for scenarios radiologists might encounter. Overall, this framework offers an assistive tool that can lighten radiologists' workload by providing preliminary findings and regions of interest to facilitate their diagnostic process.

Knowledge, attitudes, and practices of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis: a cross-sectional study.

Jiang S, Ma L, Pan K, Zhang H

pubmed logopapersJul 4 2025
Artificial intelligence (AI) holds significant promise for medical applications, particularly in coronary computed tomography angiography (CTA). We assessed the knowledge, attitudes, and practices (KAP) of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis. We conducted a cross-sectional survey from 1 July to 1 August 2024 at Tsinghua University Hospital, Beijing, China. Healthcare professionals, including both physicians and nurses, aged ≥18 years were eligible to participate. We used a structured questionnaire to collect demographic information and KAP scores. We analysed the data using correlation and regression methods, along with structural equation modelling. Among 496 participants, 58.5% were female, 52.6% held a bachelor's degree, and 40.7% worked in radiology. Mean KAP scores were 13.87 (standard deviation (SD) = 4.96, possible range = 0-20) for knowledge, 28.25 (SD = 4.35, possible range = 8-40) for attitude, and 31.67 (SD = 8.23, possible range = 10-50) for practice. Knowledge (r = 0.358; P < 0.001) and attitude positively correlated with practice (r = 0.489; P < 0.001). Multivariate logistic regression indicated that educational level, department affiliation, and job satisfaction were significant predictors of knowledge. Attitude was influenced by marital status, department, and years of experience, while practice was shaped by knowledge, attitude, departmental factors, and job satisfaction. Structural equation modelling showed that knowledge was directly affected by gender (β = -0.121; P = 0.009), workplace (β = -0.133; P = 0.004), department (β = -0.197; P < 0.001), employment status (β = -0.166; P < 0.001), and night shift frequency (β = 0.163; P < 0.001). Attitude was directly influenced by marriage (β = 0.124; P = 0.006) and job satisfaction (β = -0.528; P < 0.001). Practice was directly affected by knowledge (β = 0.389; P < 0.001), attitude (β = 0.533; P < 0.001), and gender (β = -0.092; P = 0.010). Additionally, gender (β = -0.051; P = 0.010) and marriage (β = 0.066; P = 0.007) had indirect effects on practice. Cardiovascular health care personnel exhibited suboptimal knowledge, positive attitudes, and relatively inactive practices regarding coronary CTA and AI-assisted diagnosis. Targeted educational efforts are needed to enhance knowledge and support the integration of AI into clinical workflows.

Enhancing Prostate Cancer Classification: A Comprehensive Review of Multiparametric MRI and Deep Learning Integration.

Valizadeh G, Morafegh M, Fatemi F, Ghafoori M, Saligheh Rad H

pubmed logopapersJul 4 2025
Multiparametric MRI (mpMRI) has become an essential tool in the detection of prostate cancer (PCa) and can help many men avoid unnecessary biopsies. However, interpreting prostate mpMRI remains subjective, labor-intensive, and more complex compared to traditional transrectal ultrasound. These challenges will likely grow as MRI is increasingly adopted for PCa screening and diagnosis. This development has sparked interest in non-invasive artificial intelligence (AI) support, as larger and better-labeled datasets now enable deep-learning (DL) models to address important tasks in the prostate MRI workflow. Specifically, DL classification networks can be trained to differentiate between benign tissue and PCa, identify non-clinically significant disease versus clinically significant disease, and predict high-grade cancer at both the lesion and patient levels. This review focuses on the integration of DL classification networks with mpMRI for PCa assessment, examining key network architectures and strategies, the impact of different MRI sequence inputs on model performance, and the added value of incorporating domain knowledge and clinical information into MRI-based DL classifiers. It also highlights reported comparisons between DL models and the Prostate Imaging Reporting and Data System (PI-RADS) for PCa diagnosis and the potential of AI-assisted predictions, alongside ongoing efforts to improve model explainability and interpretability to support clinical trust and adoption. It further discusses the potential role of DL-based computer-aided diagnosis systems in improving the prostate MRI reporting workflow while addressing current limitations and future outlooks to facilitate better clinical integration of these systems. Evidence Level: N/A. Technical Efficacy: Stage 2.

Comparison of neural networks for classification of urinary tract dilation from renal ultrasounds: evaluation of agreement with expert categorization.

Chung K, Wu S, Jeanne C, Tsai A

pubmed logopapersJul 4 2025
Urinary tract dilation (UTD) is a frequent problem in infants. Automated and objective classification of UTD from renal ultrasounds would streamline their interpretations. To develop and evaluate the performance of different deep learning models in predicting UTD classifications from renal ultrasound images. We searched our image archive to identify renal ultrasounds performed in infants ≤ 3-months-old for the clinical indications of prenatal UTD and urinary tract infection (9/2023-8/2024). An expert pediatric uroradiologist provided the ground truth UTD labels for representative sagittal sonographic renal images. Three different deep learning models trained with cross-entropy loss were adapted with four-fold cross-validation experiments to determine the overall performance. Our curated database included 492 right and 487 left renal ultrasounds (mean age ± standard deviation = 1.2 ± 0.1 months for both cohorts, with 341 boys/151 girls and 339 boys/148 girls, respectively). The model prediction accuracies for the right and left kidneys were 88.7% (95% confidence interval [CI], [85.8%, 91.5%]) and 80.5% (95% CI, [77.6%, 82.9%]), with weighted kappa scores of 0.90 (95% CI, [0.88, 0.91]) and 0.87 (95% CI, [0.82, 0.92]), respectively. When predictions were binarized into mild (normal/P1) and severe (UTD P2/P3) dilation, accuracies of the right and left kidneys increased to 96.3% (95% CI, [94.9%, 97.8%]) and 91.3% (95% CI, [88.5%, 94.2%]), but agreements decreased to 0.78 (95% CI, [0.73, 0.82]) and 0.75 (95% CI, [0.68, 0.82]), respectively. Deep learning models demonstrated high accuracy and agreement in classifying UTD from infant renal ultrasounds, supporting their potential as decision-support tools in clinical workflows.

Ultrasound Imaging and Machine Learning to Detect Missing Hand Motions for Individuals Receiving Targeted Muscle Reinnervation for Nerve-Pain Prevention.

Moukarzel ARE, Fitzgerald J, Battraw M, Pereira C, Li A, Marasco P, Joiner WM, Schofield J

pubmed logopapersJul 4 2025
Targeted muscle reinnervation (TMR) was initially developed as a technique for bionic prosthetic control but has since become a widely adopted strategy for managing pain and preventing neuroma formation after amputation. This shift in TMR's motivation has influenced surgical approaches, in ways that may challenge conventional electromyography (EMG)-based prosthetic control. The primary goal is often to simply reinnervate nerves to accessible muscles. This contrasts the earlier, more complex TMR surgeries that optimize EMG signal detection by carefully selecting target muscles near the skin's surface and manipulate residual anatomy to electrically isolate muscle activity. Consequently, modern TMR surgeries can involve less consideration for factors such as the depth of the reinnervated muscles or electrical crosstalk between closely located reinnervated muscles, all of which can impair the effectiveness of conventional prosthetic control systems. We recruited 4 participants with TMR, varying levels of upper limb loss, and diverse sets of reinnervated muscles. Participants attempted performing movements with their missing hands and we used a muscle activity measurement technique that employs ultrasound imaging and machine learning (sonomyography) to classify the resulting muscle movements. We found that attempted missing hand movements resulted in unique patterns of deformation in the reinnervated muscles and applying a K-nearest neighbors machine learning algorithm, we could predict 4-10 hand movements for each participant with 83.3-99.4% accuracy. Our findings suggest that despite the shifting motivations for performing TMR surgery this new generation of the surgical procedure not only offers prophylactic benefits but also retains promising opportunities for bionic prosthetic control.

Identifying features of prior hemorrhage in cerebral cavernous malformations on quantitative susceptibility maps: a machine learning pilot study.

Kinkade S, Li H, Hage S, Koskimäki J, Stadnik A, Lee J, Shenkar R, Papaioannou J, Flemming KD, Kim H, Torbey M, Huang J, Carroll TJ, Girard R, Giger ML, Awad IA

pubmed logopapersJul 4 2025
Features of new bleeding on conventional imaging in cerebral cavernous malformations (CCMs) often disappear after several weeks, yet the risk of rebleeding persists long thereafter. Increases in mean lesional quantitative susceptibility mapping (QSM) ≥ 6% on MRI during 1 year of prospective surveillance have been associated with new symptomatic hemorrhage (SH) during that period. The authors hypothesized that QSM at a single time point reflects features of hemorrhage in the prior year or potential bleeding in the subsequent year. Twenty-eight features were extracted from 265 QSM acquisitions in 120 patients enrolled in a prospective trial readiness project, and machine learning methods examined associations with SH and biomarker bleed (QSM increase ≥ 6%) in prior and subsequent years. QSM features including sum variance, variance, and correlation had lower average values in lesions with SH in the prior year (p < 0.05, false discovery rate corrected). A support-vector machine classifier recurrently selected sum average, mean lesional QSM, sphericity, and margin sharpness features to distinguish biomarker bleeds in the prior year (area under the curve = 0.61, 95% CI 0.52-0.70; p = 0.02). No QSM features were associated with a subsequent bleed. These results provide proof of concept that machine learning may derive features of QSM reflecting prior hemorrhagic activity, meriting further investigation. Clinical trial registration no.: NCT03652181 (ClinicalTrials.gov).

Revolutionizing medical imaging: A cutting-edge AI framework with vision transformers and perceiver IO for multi-disease diagnosis.

Khaliq A, Ahmad F, Rehman HU, Alanazi SA, Haleem H, Junaid K, Andrikopoulou E

pubmed logopapersJul 4 2025
The integration of artificial intelligence in medical image classification has significantly advanced disease detection. However, traditional deep learning models face persistent challenges, including poor generalizability, high false-positive rates, and difficulties in distinguishing overlapping anatomical features, limiting their clinical utility. To address these limitations, this study proposes a hybrid framework combining Vision Transformers (ViT) and Perceiver IO, designed to enhance multi-disease classification accuracy. Vision Transformers leverage self-attention mechanisms to capture global dependencies in medical images, while Perceiver IO optimizes feature extraction for computational efficiency and precision. The framework is evaluated across three critical clinical domains: neurological disorders, including Stroke (tested on the Brain Stroke Prediction CT Scan Image Dataset) and Alzheimer's (analyzed via the Best Alzheimer MRI Dataset); skin diseases, covering Tinea (trained on the Skin Diseases Dataset) and Melanoma (augmented with dermoscopic images from the HAM10000/HAM10k dataset); and lung diseases, focusing on Lung Cancer (using the Lung Cancer Image Dataset) and Pneumonia (evaluated with the Pneumonia Dataset containing bacterial, viral, and normal X-ray cases). For neurological disorders, the model achieved 0.99 accuracy, 0.99 precision, 1.00 recall, 0.99 F1-score, demonstrating robust detection of structural brain abnormalities. In skin disease classification, it attained 0.95 accuracy, 0.93 precision, 0.97 recall, 0.95 F1-score, highlighting its ability to differentiate fine-grained textural patterns in lesions. For lung diseases, the framework achieved 0.98 accuracy, 0.97 precision, 1.00 recall, 0.98 F1-score, confirming its efficacy in identifying respiratory conditions. To bridge research and clinical practice, an AI-powered chatbot was developed for real-time analysis, enabling users to upload MRI, X-ray, or skin images for automated diagnosis with confidence scores and interpretable insights. This work represents the first application of ViT and Perceiver IO for these disease categories, outperforming conventional architectures in accuracy, computational efficiency, and clinical interpretability. The framework holds significant potential for early disease detection in healthcare settings, reducing diagnostic errors, and improving treatment outcomes for clinicians, radiologists, and patients. By addressing critical limitations of traditional models, such as overlapping feature confusion and false positives, this research advances the deployment of reliable AI tools in neurology, dermatology, and pulmonology.

Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound

Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang

arxiv logopreprintJul 4 2025
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.

A comparative study of machine learning models for predicting neoadjuvant chemoradiotheraphy response in rectal cancer patients using radiomics and clinical features.

Ozdemir G, Tulu CN, Isik O, Olmez T, Sozutek A, Seker A

pubmed logopapersJul 4 2025
Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision is the standard treatment for locally advanced rectal cancer. However, the response to nCRT varies significantly among patients, making it crucial to identify those unlikely to benefit to avoid unnecessary toxicities. Radiomics, a technique for extracting quantitative features from medical images like computed tomography (CT), offers a promising noninvasive approach to analyze disease characteristics and potentially improve treatment decision-making. This retrospective cohort study aimed to compare the performance of various machine learning models in predicting the response to nCRT in rectal cancer based on medical data, including radiomic features extracted from CT, and to investigate the contribution of radiomics to these models. Participants who had completed a long course of nCRT before undergoing surgery were retrospectively enrolled. The patients were categorized into 2 groups: nonresponders and responders based on pathological assessment using the Ryan tumor regression grade. Pretreatment contrast-enhanced CT scans were used to extract 101 radiomic features using the PyRadiomics library. Clinical data, including age, gender, tumor grade, presence of colostomy, carcinoembryonic antigen level, constipation status, albumin, and hemoglobin levels, were also collected. Fifteen machine learning models were trained and evaluated using 10-fold cross-validation on a training set (n = 112 patients). The performance of the trained models was then assessed on an internal test set (n = 35 patients) and an external test set (n = 40 patients) using accuracy, area under the ROC curve (AUC), recall, precision, and F1-score. Among the models, the gradient boosting classifier showed the best training performance (accuracy: 0.92, AUC: 0.95, recall: 0.96, precision: 0.93, F1-score: 0.94). On the internal test set, the extra trees classifier (ETC) achieved an accuracy of 0.84, AUC of 0.90, recall of 0.92, precision of 0.87, and F1-score of 0.90. In the external validation, the ETC model yielded an accuracy of 0.75, AUC of 0.79, recall of 0.91, precision of 0.76, and F1-score of 0.83. Patient-specific biomarkers were more influential than radiomic features in the ETC model. The ETC consistently showed strong performance in predicting nCRT response. Clinical biomarkers, particularly tumor grade, were more influential than radiomic features. The model's external validation performance suggests potential for generalization.

Improving risk assessment of local failure in brain metastases patients using vision transformers - A multicentric development and validation study.

Erdur AC, Scholz D, Nguyen QM, Buchner JA, Mayinger M, Christ SM, Brunner TB, Wittig A, Zimmer C, Meyer B, Guckenberger M, Andratschke N, El Shafie RA, Debus JU, Rogers S, Riesterer O, Schulze K, Feldmann HJ, Blanck O, Zamboglou C, Bilger-Z A, Grosu AL, Wolff R, Eitz KA, Combs SE, Bernhardt D, Wiestler B, Rueckert D, Peeken JC

pubmed logopapersJul 4 2025
This study investigates the use of Vision Transformers (ViTs) to predict Freedom from Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a model that enhances risk stratification and informs personalized treatment strategies. Within the AURORA retrospective trial, patients (n = 352) who received surgical resection followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sampling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the generalization capabilities of the model, and saliency maps were generated for explainability analysis. We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing on the BM core confirmed that model explanations aligned with expert observations. Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical workflows, capable of improving patient outcomes through effective risk assessment and stratification.
Page 132 of 2432422 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.