Sort by:
Page 131 of 3543538 results

Mobile U-ViT: Revisiting large kernel and U-shaped ViT for efficient medical image segmentation

Fenghe Tang, Bingkun Nian, Jianrui Ding, Wenxin Ma, Quan Quan, Chengqi Dong, Jie Yang, Wei Liu, S. Kevin Zhou

arxiv logopreprintAug 1 2025
In clinical practice, medical image analysis often requires efficient execution on resource-constrained mobile devices. However, existing mobile models-primarily optimized for natural images-tend to perform poorly on medical tasks due to the significant information density gap between natural and medical domains. Combining computational efficiency with medical imaging-specific architectural advantages remains a challenge when developing lightweight, universal, and high-performing networks. To address this, we propose a mobile model called Mobile U-shaped Vision Transformer (Mobile U-ViT) tailored for medical image segmentation. Specifically, we employ the newly purposed ConvUtr as a hierarchical patch embedding, featuring a parameter-efficient large-kernel CNN with inverted bottleneck fusion. This design exhibits transformer-like representation learning capacity while being lighter and faster. To enable efficient local-global information exchange, we introduce a novel Large-kernel Local-Global-Local (LGL) block that effectively balances the low information density and high-level semantic discrepancy of medical images. Finally, we incorporate a shallow and lightweight transformer bottleneck for long-range modeling and employ a cascaded decoder with downsample skip connections for dense prediction. Despite its reduced computational demands, our medical-optimized architecture achieves state-of-the-art performance across eight public 2D and 3D datasets covering diverse imaging modalities, including zero-shot testing on four unseen datasets. These results establish it as an efficient yet powerful and generalization solution for mobile medical image analysis. Code is available at https://github.com/FengheTan9/Mobile-U-ViT.

LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI

Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck

arxiv logopreprintAug 1 2025
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Light Convolutional Neural Network to Detect Chronic Obstructive Pulmonary Disease (COPDxNet): A Multicenter Model Development and External Validation Study.

Rabby ASA, Chaudhary MFA, Saha P, Sthanam V, Nakhmani A, Zhang C, Barr RG, Bon J, Cooper CB, Curtis JL, Hoffman EA, Paine R, Puliyakote AK, Schroeder JD, Sieren JC, Smith BM, Woodruff PG, Reinhardt JM, Bhatt SP, Bodduluri S

pubmed logopapersAug 1 2025
Approximately 70% of adults with chronic obstructive pulmonary disease (COPD) remain undiagnosed. Opportunistic screening using chest computed tomography (CT) scans, commonly acquired in clinical practice, may be used to improve COPD detection through simple, clinically applicable deep-learning models. We developed a lightweight, convolutional neural network (COPDxNet) that utilizes minimally processed chest CT scans to detect COPD. We analyzed 13,043 inspiratory chest CT scans from the COPDGene participants, (9,675 standard-dose and 3,368 low-dose scans), which we randomly split into training (70%) and test (30%) sets at the participant level to no individual contributed to both sets. COPD was defined by postbronchodilator FEV /FVC < 0.70. We constructed a simple, four-block convolutional model that was trained on pooled data and validated on the held-out standard- and low-dose test sets. External validation was performed using standard-dose CT scans from 2,890 SPIROMICS participants and low-dose CT scans from 7,893 participants in the National Lung Screening Trial (NLST). We evaluated performance using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, Brier scores, and calibration curves. On COPDGene standard-dose CT scans, COPDxNet achieved an AUC of 0.92 (95% CI: 0.91 to 0.93), sensitivity of 80.2%, and specificity of 89.4%. On low-dose scans, AUC was 0.88 (95% CI: 0.86 to 0.90). When the COPDxNet model was applied to external validation datasets, it showed an AUC of 0.92 (95% CI: 0.91 to 0.93) in SPIROMICS and 0.82 (95% CI: 0.81 to 0.83) on NLST. The model was well-calibrated, with Brier scores of 0.11 for standard- dose and 0.13 for low-dose CT scans in COPDGene, 0.12 in SPIROMICS, and 0.17 in NLST. COPDxNet demonstrates high discriminative accuracy and generalizability for detecting COPD on standard- and low-dose chest CT scans, supporting its potential for clinical and screening applications across diverse populations.

Do We Need Pre-Processing for Deep Learning Based Ultrasound Shear Wave Elastography?

Sarah Grube, Sören Grünhagen, Sarah Latus, Michael Meyling, Alexander Schlaefer

arxiv logopreprintAug 1 2025
Estimating the elasticity of soft tissue can provide useful information for various diagnostic applications. Ultrasound shear wave elastography offers a non-invasive approach. However, its generalizability and standardization across different systems and processing pipelines remain limited. Considering the influence of image processing on ultrasound based diagnostics, recent literature has discussed the impact of different image processing steps on reliable and reproducible elasticity analysis. In this work, we investigate the need of ultrasound pre-processing steps for deep learning-based ultrasound shear wave elastography. We evaluate the performance of a 3D convolutional neural network in predicting shear wave velocities from spatio-temporal ultrasound images, studying different degrees of pre-processing on the input images, ranging from fully beamformed and filtered ultrasound images to raw radiofrequency data. We compare the predictions from our deep learning approach to a conventional time-of-flight method across four gelatin phantoms with different elasticity levels. Our results demonstrate statistically significant differences in the predicted shear wave velocity among all elasticity groups, regardless of the degree of pre-processing. Although pre-processing slightly improves performance metrics, our results show that the deep learning approach can reliably differentiate between elasticity groups using raw, unprocessed radiofrequency data. These results show that deep learning-based approaches could reduce the need for and the bias of traditional ultrasound pre-processing steps in ultrasound shear wave elastography, enabling faster and more reliable clinical elasticity assessments.

From Consensus to Standardization: Evaluating Deep Learning for Nerve Block Segmentation in Ultrasound Imaging.

Pelletier ED, Jeffries SD, Suissa N, Sarty I, Malka N, Song K, Sinha A, Hemmerling TM

pubmed logopapersAug 1 2025
Deep learning can automate nerve identification by learning from expert-labeled examples to detect and highlight nerves in ultrasound images. This study aims to evaluate the performance of deep-learning models in identifying nerves for ultrasound-guided nerve blocks. A total of 3594 raw ultrasound images were collected from public sources-an open GitHub repository and publicly available YouTube videos-covering 9 nerve block regions: Transversus Abdominis Plane (TAP), Femoral Nerve, Posterior Rectus Sheath, Median and Ulnar Nerves, Pectoralis Plane, Sciatic Nerve, Infraclavicular Brachial Plexus, Supraclavicular Brachial Plexus, and Interscalene Brachial Plexus. Of these, 10 images per nerve region were kept for testing, with each image labeled by 10 expert anesthesiologists. The remaining 3504 were labeled by a medical anesthesia resident and augmented to create a diverse training dataset of 25,000 images per nerve region. Additionally, 908 negative ultrasound images, which do not contain the targeted nerve structures, were included to improve model robustness. Ten convolutional neural network-based deep-learning architectures were selected to identify nerve structures. Models were trained using a 5-fold cross-validation approach on an Extended Video Graphics Array (EVGA) GeForce RTX 3090 GPU, with batch size, number of epochs, and the Adam optimizer adjusted to enhance the models' effectiveness. Posttraining, models were evaluated on a set of 10 images per nerve region, using the Dice score (range: 0 to 1, where 1 indicates perfect agreement and 0 indicates no overlap) to compare model predictions with expert-labeled images. Further validation was conducted by 10 medical experts who assessed whether they would insert a needle into the model's predictions. Statistical analyses were performed to explore the relationship between Dice scores and expert responses. The R2U-Net model achieved the highest average Dice score (0.7619) across all nerve regions, outperforming other models (0.7123-0.7619). However, statistically significant differences in model performance were observed only for the TAP nerve region (χ² = 26.4, df = 9, P = .002, ε² = 0.267). Expert evaluations indicated high accuracy in the model predictions, particularly for the Popliteal nerve region, where experts agreed to insert a needle based on all 100 model-generated predictions. Logistic modeling suggested that higher Dice overlap might increase the odds of expert acceptance in the Supraclavicular region (odds ratio [OR] = 8.59 × 10⁴, 95% confidence interval [CI], 0.33-2.25 × 10¹⁰; P = .073). The findings demonstrate the potential of deep-learning models, such as R2U-Net, to deliver consistent segmentation results in ultrasound-guided nerve block procedures.

Enhanced Detection, Using Deep Learning Technology, of Medial Meniscal Posterior Horn Ramp Lesions in Patients with ACL Injury.

Park HJ, Ham S, Shim E, Suh DH, Kim JG

pubmed logopapersJul 31 2025
Meniscal ramp lesions can impact knee stability, particularly when associated with anterior cruciate ligament (ACL) injuries. Although magnetic resonance imaging (MRI) is the primary diagnostic tool, its diagnostic accuracy remains suboptimal. We aimed to determine whether deep learning technology could enhance MRI-based ramp lesion detection. We reviewed the records of 236 patients who underwent arthroscopic procedures documenting ACL injuries and the status of the medial meniscal posterior horn. A deep learning model was developed using MRI data for ramp lesion detection. Ramp lesion risk factors among patients who underwent ACL reconstruction were analyzed using logistic regression, extreme gradient boosting (XGBoost), and random forest models and were integrated into a final prediction model using Swin Transformer Large architecture. The deep learning model using MRI data demonstrated superior overall diagnostic performance to the clinicians' assessment (accuracy of 73.3% compared with 68.1%, specificity of 78.0% compared with 62.9%, and sensitivity of 64.7% compared with 76.4%). Incorporating risk factors (age, posteromedial tibial bone marrow edema, and lateral meniscal tears) improved the model's accuracy to 80.7%, with a sensitivity of 81.8% and a specificity of 80.9%. Integrating deep learning with MRI data and risk factors significantly enhanced diagnostic accuracy for ramp lesions, surpassing that of the model using MRI alone and that of clinicians. This study highlights the potential of artificial intelligence to provide clinicians with more accurate diagnostic tools for detecting ramp lesions, potentially enhancing treatment and patient outcomes. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

A Trust-Guided Approach to MR Image Reconstruction with Side Information.

Atalik A, Chopra S, Sodickson DK

pubmed logopapersJul 31 2025
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust-Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.

Generative artificial intelligence for counseling of fetal malformations following ultrasound diagnosis.

Grünebaum A, Chervenak FA

pubmed logopapersJul 31 2025
To explore the potential role of generative artificial intelligence (GenAI) in enhancing patient counseling following prenatal ultrasound diagnosis of fetal malformations, with an emphasis on clinical utility, patient comprehension, and ethical implementation. The detection of fetal anomalies during the mid-trimester ultrasound is emotionally distressing for patients and presents significant challenges in communication and decision-making. Generative AI tools, such as GPT-4 and similar models, offer novel opportunities to support clinicians in delivering accurate, empathetic, and accessible counseling while preserving the physician's central role. We present a narrative review and applied framework illustrating how GenAI can assist obstetricians before, during, and after the fetal anomaly scan. Use cases include lay summaries, visual aids, anticipatory guidance, multilingual translation, and emotional support. Tables and sample prompts demonstrate practical applications across a range of anomalies.

Effect of spatial resolution on the diagnostic performance of machine-learning radiomics model in lung adenocarcinoma: comparisons between normal- and high-spatial-resolution imaging for predicting invasiveness.

Yanagawa M, Nagatani Y, Hata A, Sumikawa H, Moriya H, Iwano S, Tsuchiya N, Iwasawa T, Ohno Y, Tomiyama N

pubmed logopapersJul 31 2025
To construct two machine learning radiomics (MLR) for invasive adenocarcinoma (IVA) prediction using normal-spatial-resolution (NSR) and high-spatial-resolution (HSR) training cohorts, and to validate models (model-NSR and -HSR) in another test cohort while comparing independent radiologists' (R1, R2) performance with and without model-HSR. In this retrospective multicenter study, all CT images were reconstructed using NSR data (512 matrix, 0.5-mm thickness) and HSR data (2048 matrix, 0.25-mm thickness). Nodules were divided into training (n = 61 non-IVA, n = 165 IVA) and test sets (n = 36 non-IVA, n = 203 IVA). Two MLR models were developed with 18 significant factors for the NSR model and 19 significant factors for the HSR model from 172 radiomics features using random forest. Area under the receiver operator characteristic curves (AUC) was analyzed using DeLong's test in the test set. Accuracy (acc), sensitivity (sen), and specificity (spc) of R1 and R2 with and without model-HSR were compared using McNemar test. 437 patients (70 ± 9 years, 203 men) had 465 nodules (n = 368, IVA). Model-HSR AUCs were significantly higher than model-NSR in training (0.839 vs. 0.723) and test sets (0.863 vs. 0.718) (p < 0.05). R1's acc (87.2%) and sen (93.1%) with model-HSR were significantly higher than without (77.0% and 79.3%) (p < 0.0001). R2's acc (83.7%) and sen (86.7%) with model-HSR might be equal or higher than without (83.7% and 85.7%, respectively), but not significant (p > 0.50). Spc of R1 (52.8%) and R2 (66.7%) with model-HSR might be lower than without (63.9% and 72.2%, respectively), but not significant (p > 0.21). HSR-based MLR model significantly increased IVA diagnostic performance compared to NSR, supporting radiologists without compromising accuracy and sensitivity. However, this benefit came at the cost of reduced specificity, potentially increasing false positives, which may lead to unnecessary examinations or overtreatment in clinical settings.

Hybrid optimization enabled Eff-FDMNet for Parkinson's disease detection and classification in federated learning.

Subramaniam S, Balakrishnan U

pubmed logopapersJul 31 2025
Parkinson's Disease (PD) is a progressive neurodegenerative disorder and the early diagnosis is crucial for managing symptoms and slowing disease progression. This paper proposes a framework named Federated Learning Enabled Waterwheel Shuffled Shepherd Optimization-based Efficient-Fuzzy Deep Maxout Network (FedL_WSSO based Eff-FDMNet) for PD detection and classification. In local training model, the input image from the database "Image and Data Archive (IDA)" is given for preprocessing that is performed using Gaussian filter. Consequently, image augmentation takes place and feature extraction is conducted. These processes are executed for every input image. Therefore, the collected outputs of images are used for PD detection using Shepard Convolutional Neural Network Fuzzy Zeiler and Fergus Net (ShCNN-Fuzzy-ZFNet). Then, PD classification is accomplished using Eff-FDMNet, which is trained using WSSO. At last, based on CAViaR, local updation and aggregation are changed in server. The developed method obtained highest accuracy as 0.927, mean average precision as 0.905, lowest false positive rate (FPR) as 0.082, loss as 0.073, Mean Squared Error (MSE) as 0.213, and Root Mean Squared Error (RMSE) as 0.461. The high accuracy and low error rates indicate that the potent framework can enhance patient outcomes by enabling more reliable and personalized diagnosis.
Page 131 of 3543538 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.