Sort by:
Page 13 of 22212 results

Photon-counting detector CT in musculoskeletal imaging: benefits and outlook.

El Sadaney AO, Ferrero A, Rajendran K, Booij R, Marcus R, Sutter R, Oei EHG, Baffour F

pubmed logopapersJun 6 2025
Photon-counting detector CT (PCD-CT) represents a significant advancement in medical imaging, particularly for musculoskeletal (MSK) applications. Its primary innovation lies in enhanced spatial resolution, which facilitates improved detection of small anatomical structures such as trabecular bone, osteophytes, and subchondral cysts. PCD-CT enables high-quality imaging with reduced radiation doses, making it especially beneficial for populations requiring frequent imaging, such as pediatric patients and individuals with multiple myeloma. Additionally, PCD-CT supports advanced applications like bone quality assessment, which correlates well with gold-standard tests, and can aid in diagnosing osteoporosis and assessing fracture risk. Techniques such as spectral shaping and virtual monoenergetic imaging further optimize the technology, minimizing artifacts and enhancing material decomposition. These capabilities extend to conditions like gout and hematologic malignancies, offering improved detection and assessment. The integration of artificial intelligence could enhance PCD-CT's performance by reducing image noise and improving quantitative assessments. Ultimately, PCD-CT's superior resolution, reduced dose protocols, and multi-energy imaging capabilities will likely have a transformative impact on MSK imaging, improving diagnostic accuracy, patient care, and clinical outcomes.

Chest CT in the Evaluation of COPD: Recommendations of Asian Society of Thoracic Radiology.

Fan L, Seo JB, Ohno Y, Lee SM, Ashizawa K, Lee KY, Yang Q, Tanomkiat W, Văn CC, Hieu HT, Liu SY, Goo JM

pubmed logopapersJun 6 2025
Chronic Obstructive Pulmonary Disease (COPD) is a significant public health challenge globally, with Asia facing unique burdens due to varying demographics, healthcare access, and socioeconomic conditions. Recognizing the limitations of pulmonary function tests (PFTs) in early detection and comprehensive evaluation, the Asian Society of Thoracic Radiology (ASTR) presents this recommendations to guide the use of chest computed tomography (CT) in COPD diagnosis and management. This document consolidates evidence from an extensive literature review and surveys across Asia, highlighting the need for standardized CT protocols and practices. Key recommendations include adopting low-dose paired respiratory phase CT scans, utilizing qualitative and quantitative assessments for airway, vascular, and parenchymal evaluation, and emphasizing structured reporting to enhance clinical decision-making. Advanced technologies, including dual-energy CT and artificial intelligence, are proposed to refine diagnosis, monitor disease progression, and guide personalized interventions. These recommendations aim to improve the early detection of COPD, address its heterogeneity, and reduce its socioeconomic impact by establishing consistent and effective imaging practices across the region. This recommendations underscore the pivotal role of chest CT in advancing COPD care in Asia, providing a foundation for future research and practice refinement.

Advances in disease detection through retinal imaging: A systematic review.

Bilal H, Keles A, Bendechache M

pubmed logopapersJun 6 2025
Ocular and non-ocular diseases significantly impact millions of people worldwide, leading to vision impairment or blindness if not detected and managed early. Many individuals could be prevented from becoming blind by treating these diseases early on and stopping their progression. Despite advances in medical imaging and diagnostic tools, the manual detection of these diseases remains labor-intensive, time-consuming, and dependent on the expert's experience. Computer-aided diagnosis (CAD) has been transformed by machine learning (ML), providing promising methods for the automated detection and grading of diseases using various retinal imaging modalities. In this paper, we present a comprehensive systematic literature review that discusses the use of ML techniques to detect diseases from retinal images, utilizing both single and multi-modal imaging approaches. We analyze the efficiency of various Deep Learning and classical ML models, highlighting their achievements in accuracy, sensitivity, and specificity. Even with these advancements, the review identifies several critical challenges. We propose future research directions to address these issues. By overcoming these challenges, the potential of ML to enhance diagnostic accuracy and patient outcomes can be fully realized, opening the way for more reliable and effective ocular and non-ocular disease management.

Analysis of Research Hotspots and Development Trends in the Diagnosis of Lung Diseases Using Low-Dose CT Based on Bibliometrics.

Liu X, Chen X, Jiang Y, Chen Y, Zhang D, Fan L

pubmed logopapersJun 5 2025
Lung cancer is one of the main threats to global health, among lung diseases. Low-Dose Computed Tomography (LDCT) provides significant benefits for its screening but also brings new diagnostic challenges that require close attention. By searching the Web of Science core collection, we selected articles and reviews published in English between 2005 and June 2024 on topics such as "Low-dose", "CT image", and "Lung". These literatures were analyzed by bibliometric method, and CiteSpace software was used to explore the cooperation between countries, the cooperative relationship between authors, highly cited literature, and the distribution of keywords to reveal the research hotspots and trends in this field. The number of LDCT research articles show a trend of continuous growth between 2019 and 2022. The United States is at the forefront of research in this field, with a centrality of 0.31; China has also rapidly conducted research with a centrality of 0.26. The authors' co-occurrence map shows that research teams in this field are highly cooperative, and their research questions are closely related. The analysis of highly cited literature and keywords confirmed the significant advantages of LDCT in lung cancer screening, which can help reduce the mortality of lung cancer patients and improve the prognosis. "Lung cancer" and "CT" have always been high-frequency keywords, while "image quality" and "low dose CT" have become new hot keywords, indicating that LDCT using deep learning techniques has become a hot topic in early lung cancer research. The study revealed that advancements in CT technology have driven in-depth research from application challenges to image processing, with the research trajectory evolving from technical improvements to health risk assessments and subsequently to AI-assisted diagnosis. Currently, the research focus has shifted toward integrating deep learning with LDCT technology to address complex diagnostic challenges. The study also presents global research trends and geographical distributions of LDCT technology, along with the influence of key research institutions and authors. The comprehensive analysis aims to promote the development and application of LDCT technology in pulmonary disease diagnosis and enhance diagnostic accuracy and patient management efficiency. The future will focus on LDCT reconstruction algorithms to balance image noise and radiation dose. AI-assisted multimodal imaging supports remote diagnosis and personalized health management by providing dynamic analysis, risk assessment, and follow-up recommendations to support early diagnosis.

Current State of Artificial Intelligence Model Development in Obstetrics.

Devoe LD, Muhanna M, Maher J, Evans MI, Klein-Seetharaman J

pubmed logopapersJun 5 2025
Publications on artificial intelligence (AI) applications have dramatically increased for most medical specialties, including obstetrics. Here, we review the most recent pertinent publications on AI programs in obstetrics, describe trends in AI applications for specific obstetric problems, and assess AI's possible effects on obstetric care. Searches were performed in PubMed (MeSH), MEDLINE, Ovid, ClinicalTrials.gov, Google Scholar, and Web of Science using a combination of keywords and text words related to "obstetrics," "pregnancy," "artificial intelligence," "machine learning," "deep learning," and "neural networks," for articles published between June 1, 2019, and May 31, 2024. A total of 1,768 articles met at least one search criterion. After eliminating reviews, duplicates, retractions, inactive research protocols, unspecified AI programs, and non-English-language articles, 207 publications remained for further review. Most studies were conducted outside of the United States, were published in nonobstetric journals, and focused on risk prediction. Study population sizes ranged widely from 10 to 953,909, and model performance abilities also varied widely. Evidence quality was assessed by the description of model construction, predictive accuracy, and whether validation had been performed. Most studies had patient groups differing considerably from U.S. populations, rendering their generalizability to U.S. patients uncertain. Artificial intelligence ultrasound applications focused on imaging issues are those most likely to influence current obstetric care. Other promising AI models include early risk screening for spontaneous preterm birth, preeclampsia, and gestational diabetes mellitus. The rate at which AI studies are being performed virtually guarantees that numerous applications will eventually be introduced into future U.S. obstetric practice. Very few of the models have been deployed in obstetric practice, and more high-quality studies are needed with high predictive accuracy and generalizability. Assuming these conditions are met, there will be an urgent need to educate medical students, postgraduate trainees and practicing physicians to understand how to effectively and safely implement this technology.

A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks

Loan Dao, Ngoc Quoc Ly

arxiv logopreprintJun 4 2025
Over the past decade, Medical Image Segmentation (MIS) using Deep Neural Networks (DNNs) has achieved significant performance improvements and holds great promise for future developments. This paper presents a comprehensive study on MIS based on DNNs. Intelligent Vision Systems are often evaluated based on their output levels, such as Data, Information, Knowledge, Intelligence, and Wisdom (DIKIW),and the state-of-the-art solutions in MIS at these levels are the focus of research. Additionally, Explainable Artificial Intelligence (XAI) has become an important research direction, as it aims to uncover the "black box" nature of previous DNN architectures to meet the requirements of transparency and ethics. The study emphasizes the importance of MIS in disease diagnosis and early detection, particularly for increasing the survival rate of cancer patients through timely diagnosis. XAI and early prediction are considered two important steps in the journey from "intelligence" to "wisdom." Additionally, the paper addresses existing challenges and proposes potential solutions to enhance the efficiency of implementing DNN-based MIS.

Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice.

Fink A, Rau A, Reisert M, Bamberg F, Russe MF

pubmed logopapersJun 4 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Large language models (LLMs) hold substantial promise in addressing the growing workload in radiology, but recent studies also reveal limitations, such as hallucinations and opacity in sources for LLM responses. Retrieval-augmented Generation (RAG) based LLMs offer a promising approach to streamline radiology workflows by integrating reliable, verifiable, and customizable information. Ongoing refinement is critical to enable RAG models to manage large amounts of input data and to engage in complex multiagent dialogues. This report provides an overview of recent advances in LLM architecture, including few-shot and zero-shot learning, RAG integration, multistep reasoning, and agentic RAG, and identifies future research directions. Exemplary cases demonstrate the practical application of these techniques in radiology practice. ©RSNA, 2025.

Advancements in Artificial Intelligence Applications for Cardiovascular Disease Research

Yuanlin Mo, Haishan Huang, Bocheng Liang, Weibo Ma

arxiv logopreprintJun 4 2025
Recent advancements in artificial intelligence (AI) have revolutionized cardiovascular medicine, particularly through integration with computed tomography (CT), magnetic resonance imaging (MRI), electrocardiography (ECG) and ultrasound (US). Deep learning architectures, including convolutional neural networks and generative adversarial networks, enable automated analysis of medical imaging and physiological signals, surpassing human capabilities in diagnostic accuracy and workflow efficiency. However, critical challenges persist, including the inability to validate input data accuracy, which may propagate diagnostic errors. This review highlights AI's transformative potential in precision diagnostics while underscoring the need for robust validation protocols to ensure clinical reliability. Future directions emphasize hybrid models integrating multimodal data and adaptive algorithms to refine personalized cardiovascular care.

A review on learning-based algorithms for tractography and human brain white matter tracts recognition.

Barati Shoorche A, Farnia P, Makkiabadi B, Leemans A

pubmed logopapersJun 4 2025
Human brain fiber tractography using diffusion magnetic resonance imaging is a crucial stage in mapping brain white matter structures, pre-surgical planning, and extracting connectivity patterns. Accurate and reliable tractography, by providing detailed geometric information about the position of neural pathways, minimizes the risk of damage during neurosurgical procedures. Both tractography itself and its post-processing steps such as bundle segmentation are usually used in these contexts. Many approaches have been put forward in the past decades and recently, multiple data-driven tractography algorithms and automatic segmentation pipelines have been proposed to address the limitations of traditional methods. Several of these recent methods are based on learning algorithms that have demonstrated promising results. In this study, in addition to introducing diffusion MRI datasets, we review learning-based algorithms such as conventional machine learning, deep learning, reinforcement learning and dictionary learning methods that have been used for white matter tract, nerve and pathway recognition as well as whole brain streamlines or whole brain tractogram creation. The contribution is to discuss both tractography and tract recognition methods, in addition to extending previous related reviews with most recent methods, covering architectures as well as network details, assess the efficiency of learning-based methods through a comprehensive comparison in this field, and finally demonstrate the important role of learning-based methods in tractography.

Recent Advances in Medical Image Classification

Loan Dao, Ngoc Quoc Ly

arxiv logopreprintJun 4 2025
Medical image classification is crucial for diagnosis and treatment, benefiting significantly from advancements in artificial intelligence. The paper reviews recent progress in the field, focusing on three levels of solutions: basic, specific, and applied. It highlights advances in traditional methods using deep learning models like Convolutional Neural Networks and Vision Transformers, as well as state-of-the-art approaches with Vision Language Models. These models tackle the issue of limited labeled data, and enhance and explain predictive results through Explainable Artificial Intelligence.
Page 13 of 22212 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.