Sort by:
Page 13 of 15147 results

Stroke prediction in elderly patients with atrial fibrillation using machine learning combined clinical and left atrial appendage imaging phenotypic features.

Huang H, Xiong Y, Yao Y, Zeng J

pubmed logopapersMay 24 2025
Atrial fibrillation (AF) is one of the primary etiologies for ischemic stroke, and it is of paramount importance to delineate the risk phenotypes among elderly AF patients and to investigate more efficacious models for predicting stroke risk. This single-center prospective cohort study collected clinical data and cardiac computed tomography angiography (CTA) images from elderly AF patients. The clinical phenotypes and left atrial appendage (LAA) radiomic phenotypes of elderly AF patients were identified through K-means clustering. The independent correlations between these phenotypes and stroke risk were subsequently analyzed. Machine learning algorithms-Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting-were selected to develop a predictive model for stroke risk in this patient cohort. The model was assessed using the Area Under the Receiver Operating Characteristic Curve, Hosmer-Lemeshow tests, and Decision Curve Analysis. A total of 419 elderly AF patients (≥ 65 years old) were included. K-means clustering identified three clinical phenotypes: Group A (cardiac enlargement/dysfunction), Group B (normal phenotype), and Group C (metabolic/coagulation abnormalities). Stroke incidence was highest in Group A (19.3%) and Group C (14.5%) versus Group B (3.3%). Similarly, LAA radiomic phenotypes revealed elevated stroke risk in patients with enlarged LAA structure (Group B: 20.0%) and complex LAA morphology (Group C: 14.0%) compared to normal LAA (Group A: 2.9%). Among the five machine learning models, the SVM model achieved superior prediction performance (AUROC: 0.858 [95% CI: 0.830-0.887]). The stroke-risk prediction model for elderly AF patients constructed based on the SVM algorithm has strong predictive efficacy.

Optimizing the power of AI for fracture detection: from blind spots to breakthroughs.

Behzad S, Eibschutz L, Lu MY, Gholamrezanezhad A

pubmed logopapersMay 23 2025
Artificial Intelligence (AI) is increasingly being integrated into the field of musculoskeletal (MSK) radiology, from research methods to routine clinical practice. Within the field of fracture detection, AI is allowing for precision and speed previously unimaginable. Yet, AI's decision-making processes are sometimes wrought with deficiencies, undermining trust, hindering accountability, and compromising diagnostic precision. To make AI a trusted ally for radiologists, we recommend incorporating clinical history, rationalizing AI decisions by explainable AI (XAI) techniques, increasing the variety and scale of training data to approach the complexity of a clinical situation, and active interactions between clinicians and developers. By bridging these gaps, the true potential of AI can be unlocked, enhancing patient outcomes and fundamentally transforming radiology through a harmonious integration of human expertise and intelligent technology. In this article, we aim to examine the factors contributing to AI inaccuracies and offer recommendations to address these challenges-benefiting both radiologists and developers striving to improve future algorithms.

Novel Deep Learning Framework for Simultaneous Assessment of Left Ventricular Mass and Longitudinal Strain: Clinical Feasibility and Validation in Patients with Hypertrophic Cardiomyopathy

Park, J., Yoon, Y. E., Jang, Y., Jung, T., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Chun, E. J., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 23 2025
BackgroundThis study aims to present the Segmentation-based Myocardial Advanced Refinement Tracking (SMART) system, a novel artificial intelligence (AI)-based framework for transthoracic echocardiography (TTE) that incorporates motion tracking and left ventricular (LV) myocardial segmentation for automated LV mass (LVM) and global longitudinal strain (LVGLS) assessment. MethodsThe SMART system demonstrates LV speckle tracking based on motion vector estimation, refined by structural information using endocardial and epicardial segmentation throughout the cardiac cycle. This approach enables automated measurement of LVMSMART and LVGLSSMART. The feasibility of SMART is validated in 111 hypertrophic cardiomyopathy (HCM) patients (median age: 58 years, 69% male) who underwent TTE and cardiac magnetic resonance imaging (CMR). ResultsLVGLSSMART showed a strong correlation with conventional manual LVGLS measurements (Pearsons correlation coefficient [PCC] 0.851; mean difference 0 [-2-0]). When compared to CMR as the reference standard for LVM, the conventional dimension-based TTE method overestimated LVM (PCC 0.652; mean difference: 106 [90-123]), whereas LVMSMART demonstrated excellent agreement with CMR (PCC 0.843; mean difference: 1 [-11-13]). For predicting extensive myocardial fibrosis, LVGLSSMART and LVMSMART exhibited performance comparable to conventional LVGLS and CMR (AUC: 0.72 and 0.66, respectively). Patients identified as high-risk for extensive fibrosis by LVGLSSMART and LVMSMART had significantly higher rates of adverse outcomes, including heart failure hospitalization, new-onset atrial fibrillation, and defibrillator implantation. ConclusionsThe SMART technique provides a comparable LVGLS evaluation and a more accurate LVM assessment than conventional TTE, with predictive values for myocardial fibrosis and adverse outcomes. These findings support its utility in HCM management.

AI in Action: A Roadmap from the Radiology AI Council for Effective Model Evaluation and Deployment.

Trivedi H, Khosravi B, Gichoya J, Benson L, Dyckman D, Galt J, Howard B, Kikano E, Kunjummen J, Lall N, Li X, Patel S, Safdar N, Salastekar N, Segovis C, van Assen M, Harri P

pubmed logopapersMay 23 2025
As the integration of artificial intelligence (AI) into radiology workflows continues to evolve, establishing standardized processes for the evaluation and deployment of AI models is crucial to ensure success. This paper outlines the creation of a Radiology AI Council at a large academic center and subsequent development of framework in the form of a rubric to formalize the evaluation of radiology AI models and onboard them into clinical workflows. The rubric aims to address the challenges faced during the deployment of AI models, such as real-world model performance, workflow implementation, resource allocation, return on investment (ROI), and impact to the broader health system. Using this comprehensive rubric, the council aims to ensure that the process for selecting AI models is both standardized and transparent. This paper outlines the steps taken to establish this rubric, its components, and initial results from evaluation of 13 models over an 8-month period. We emphasize the importance of holistic model evaluation beyond performance metrics, and transparency and objectivity in AI model evaluation with the goal of improving the efficacy and safety of AI models in radiology.

Evaluation of a deep-learning segmentation model for patients with colorectal cancer liver metastases (COALA) in the radiological workflow.

Zeeuw M, Bereska J, Strampel M, Wagenaar L, Janssen B, Marquering H, Kemna R, van Waesberghe JH, van den Bergh J, Nota I, Moos S, Nio Y, Kop M, Kist J, Struik F, Wesdorp N, Nelissen J, Rus K, de Sitter A, Stoker J, Huiskens J, Verpalen I, Kazemier G

pubmed logopapersMay 23 2025
For patients with colorectal liver metastases (CRLM), total tumor volume (TTV) is prognostic. A deep-learning segmentation model for CRLM to assess TTV called COlorectal cAncer Liver metastases Assessment (COALA) has been developed. This study evaluated COALA's performance and practical utility in the radiological picture archiving and communication system (PACS). A secondary aim was to provide lessons for future researchers on the implementation of artificial intelligence (AI) models. Patients discussed between January and December 2023 in a multidisciplinary meeting for CRLM were included. In those patients, CRLM was automatically segmented in portal-venous phase CT scans by COALA and integrated with PACS. Eight expert abdominal radiologists completed a questionnaire addressing segmentation accuracy and PACS integration. They were also asked to write down general remarks. In total, 57 patients were evaluated. Of those patients, 112 contrast-enhanced portal-venous phase CT scans were analyzed. Of eight radiologists, six (75%) evaluated the model as user-friendly in their radiological workflow. Areas of improvement of the COALA model were the segmentation of small lesions, heterogeneous lesions, and lesions at the border of the liver with involvement of the diaphragm or heart. Key lessons for implementation were a multidisciplinary approach, a robust method prior to model development and organizing evaluation sessions with end-users early in the development phase. This study demonstrates that the deep-learning segmentation model for patients with CRLM (COALA) is user-friendly in the radiologist's PACS. Future researchers striving for implementation should have a multidisciplinary approach, propose a robust methodology and involve end-users prior to model development. Many segmentation models are being developed, but none of those models are evaluated in the (radiological) workflow or clinically implemented. Our model is implemented in the radiological work system, providing valuable lessons for researchers to achieve clinical implementation. Developed segmentation models should be implemented in the radiological workflow. Our implemented segmentation model provides valuable lessons for future researchers. If implemented in clinical practice, our model could allow for objective radiological evaluation.

Deep learning and iterative image reconstruction for head CT: Impact on image quality and radiation dose reduction-Comparative study.

Pula M, Kucharczyk E, Zdanowicz-Ratajczyk A, Dorochowicz M, Guzinski M

pubmed logopapersMay 23 2025
<b>Background and purpose:</b> This study focuses on an objective evaluation of a novel reconstruction algorithm-Deep Learning Image Reconstruction (DLIR)-ability to improve image quality and reduce radiation dose compared to the established standard of Adaptive Statistical Iterative Reconstruction-V (ASIR-V), in unenhanced head computed tomography (CT). <b>Materials and methods:</b> A retrospective analysis of 163 consecutive unenhanced head CTs was conducted. Image quality assessment was computed on the objective parameters of Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR), derived from 5 regions of interest (ROI). The evaluation of DLIR dose reduction abilities was based on the analysis of the PACS derived parameters of dose length product and computed tomography dose index volume (CTDIvol). <b>Results:</b> Following the application of rigorous criteria, the study comprised 35 patients. Significant image quality improvement was achieved with the implementation of DLIR, as evidenced by up to a 145% and 160% increase in SNR in supra- and infratentorial regions, respectively. CNR measurements further confirmed the superiority of DLIR over ASIR-V, with an increase of 171.5% in the supratentorial region and a 59.3% increase in the infratentorial region. Despite the signal improvement and noise reduction DLIR facilitated radiation dose reduction of up to 44% in CTDIvol. <b>Conclusion:</b> Implementation of DLIR in head CT scans enables significant image quality improvement and dose reduction abilities compared to standard ASIR-V. However, the dose reduction feature was proven insufficient to counteract the lack of gantry angulation in wide-detector scanners.

ESR Essentials: a step-by-step guide of segmentation for radiologists-practice recommendations by the European Society of Medical Imaging Informatics.

Chupetlovska K, Akinci D'Antonoli T, Bodalal Z, Abdelatty MA, Erenstein H, Santinha J, Huisman M, Visser JJ, Trebeschi S, Groot Lipman KBW

pubmed logopapersMay 22 2025
High-quality segmentation is important for AI-driven radiological research and clinical practice, with the potential to play an even more prominent role in the future. As medical imaging advances, accurately segmenting anatomical and pathological structures is increasingly used to obtain quantitative data and valuable insights. Segmentation and volumetric analysis could enable more precise diagnosis, treatment planning, and patient monitoring. These guidelines aim to improve segmentation accuracy and consistency, allowing for better decision-making in both research and clinical environments. Practical advice on planning and organization is provided, focusing on quality, precision, and communication among clinical teams. Additionally, tips and strategies for improving segmentation practices in radiology and radiation oncology are discussed, as are potential pitfalls to avoid. KEY POINTS: As AI continues to advance, volumetry will become more integrated into clinical practice, making it essential for radiologists to stay informed about its applications in diagnosis and treatment planning. There is a significant lack of practical guidelines and resources tailored specifically for radiologists on technical topics like segmentation and volumetric analysis. Establishing clear rules and best practices for segmentation can streamline volumetric assessment in clinical settings, making it easier to manage and leading to more accurate decision-making for patient care.

Deep Learning Image Reconstruction (DLIR) Algorithm to Maintain High Image Quality and Diagnostic Accuracy in Quadruple-low CT Angiography of Children with Pulmonary Sequestration: A Case Control Study.

Li H, Zhang Y, Hua S, Sun R, Zhang Y, Yang Z, Peng Y, Sun J

pubmed logopapersMay 22 2025
CT angiography (CTA) is a commonly used clinical examination to detect abnormal arteries and diagnose pulmonary sequestration (PS). Reducing the radiation dose, contrast medium dosage, and injection pressure in CTA, especially in children, has always been an important research topic, but few research is proven by pathology. The current study aimed to evaluate the diagnostic accuracy for children with PS in a quadruple-low CTA (4L-CTA: low tube voltage, radiation, contrast medium, and injection flow rate) using deep learning image reconstruction (DLIR) in comparison with routine protocol CTA with adaptive statistical iterative reconstruction-V (ASIR-V) MATERIALS AND METHODS: 53 patients (1.50±1.36years) suspected with PS were enrolled to undergo chest 4L-CTA using 70kVp tube voltage with radiation dose or 0.90 mGy in volumetric CT dose index (CTDIvol) and contrast medium dose of 0.8 ml/kg injected in 16 s. Images were reconstructed using DLIR. Another 53 patients (1.25±1.02years) with a routine dose protocol was used for comparison, and images were reconstructed with ASIR-V. The contrast-to-noise ratio (CNR) and edge-rise distance (ERD) of the aorta were calculated. The subjective overall image quality and artery visualization were evaluated using a 5-point scale (5, excellent; 3, acceptable). All patients underwent surgery after CT, the sensitivity and specificity for diagnosing PS were calculated. 4L-CTA reduced radiation dose by 51%, contrast dose by 47%, injection flow rate by 44% and injection pressure by 44% compared to the routine CTA (all p<0.05). Both groups had satisfactory subjective image quality and achieved 100% in both sensitivity and specificity for diagnosing PS. 4L-CTA had a reduced CNR (by 27%, p<0.05) but similar ERD, which reflects the image spatial resolution (p>0.05) compared to the routine CTA. 4L-CTA revealed small arteries with a diameter of 0.8 mm. DLIR ensures the realization of 4L-CTA in children with PS for significant radiation and contrast dose reduction, while maintaining image quality, visualization of small arteries, and high diagnostic accuracy.

Influence of content-based image retrieval on the accuracy and inter-reader agreement of usual interstitial pneumonia CT pattern classification.

Park S, Hwang HJ, Yun J, Chae EJ, Choe J, Lee SM, Lee HN, Shin SY, Park H, Jeong H, Kim MJ, Lee JH, Jo KW, Baek S, Seo JB

pubmed logopapersMay 22 2025
To investigate whether a content-based image retrieval (CBIR) of similar chest CT images can help usual interstitial pneumonia (UIP) CT pattern classifications among readers with varying levels of experience. This retrospective study included patients who underwent high-resolution chest CT between 2013 and 2015 for the initial workup for fibrosing interstitial lung disease. UIP classifications were assigned to CT images by three thoracic radiologists, which served as the ground truth. One hundred patients were selected as queries. The CBIR retrieved the top three similar CT images with UIP classifications using a deep learning algorithm. The diagnostic accuracies and inter-reader agreement of nine readers before and after CBIR were evaluated. Of 587 patients (mean age, 63 years; 356 men), 100 query cases (26 UIP patterns, 26 probable UIP patterns, 5 indeterminate for UIP, and 43 alternative diagnoses) were selected. After CBIR, the mean accuracy (61.3% to 67.1%; p = 0.011) and inter-reader agreement (Fleiss Kappa, 0.400 to 0.476; p = 0.003) were slightly improved. The accuracies of the radiologist group for all CT patterns except indeterminate for UIP increased after CBIR; however, they did not reach statistical significance. The resident and pulmonologist groups demonstrated mixed results: accuracy decreased for UIP pattern, increased for alternative diagnosis, and varied for others. CBIR slightly improved diagnostic accuracy and inter-reader agreement in UIP pattern classifications. However, its impact varied depending on the readers' level of experience, suggesting that the current CBIR system may be beneficial when used to complement the interpretations of experienced readers. Question CT pattern classification is important for the standardized assessment and management of idiopathic pulmonary fibrosis, but requires radiologic expertise and shows inter-reader variability. Findings CBIR slightly improved diagnostic accuracy and inter-reader agreement for UIP CT pattern classifications overall. Clinical relevance The proposed CBIR system may guide consistent work-up and treatment strategies by enhancing accuracy and inter-reader agreement in UIP CT pattern classifications by experienced readers whose expertise and experience can effectively interact with CBIR results.

Coronary Computed Tomographic Angiography to Optimize the Diagnostic Yield of Invasive Angiography for Low-Risk Patients Screened With Artificial Intelligence: Protocol for the CarDIA-AI Randomized Controlled Trial.

Petch J, Tabja Bortesi JP, Sheth T, Natarajan M, Pinilla-Echeverri N, Di S, Bangdiwala SI, Mosleh K, Ibrahim O, Bainey KR, Dobranowski J, Becerra MP, Sonier K, Schwalm JD

pubmed logopapersMay 21 2025
Invasive coronary angiography (ICA) is the gold standard in the diagnosis of coronary artery disease (CAD). Being invasive, it carries rare but serious risks including myocardial infarction, stroke, major bleeding, and death. A large proportion of elective outpatients undergoing ICA have nonobstructive CAD, highlighting the suboptimal use of this test. Coronary computed tomographic angiography (CCTA) is a noninvasive option that provides similar information with less risk and is recommended as a first-line test for patients with low-to-intermediate risk of CAD. Leveraging artificial intelligence (AI) to appropriately direct patients to ICA or CCTA based on the predicted probability of disease may improve the efficiency and safety of diagnostic pathways. he CarDIA-AI (Coronary computed tomographic angiography to optimize the Diagnostic yield of Invasive Angiography for low-risk patients screened with Artificial Intelligence) study aims to evaluate whether AI-based risk assessment for obstructive CAD implemented within a centralized triage process can optimize the use of ICA in outpatients referred for nonurgent ICA. CarDIA-AI is a pragmatic, open-label, superior randomized controlled trial involving 2 Canadian cardiac centers. A total of 252 adults referred for elective outpatient ICA will be randomized 1:1 to usual care (directly proceeding to ICA) or to triage using an AI-based decision support tool. The AI-based decision support tool was developed using referral information from over 37,000 patients and uses a light gradient boosting machine model to predict the probability of obstructive CAD based on 42 clinically relevant predictors, including patient referral information, demographic characteristics, risk factors, and medical history. Participants in the intervention arm will have their ICA referral forms and medical charts reviewed, and select details entered into the decision support tool, which recommends CCTA or ICA based on the patient's predicted probability of obstructive CAD. All patients will receive the selected imaging modality within 6 weeks of referral and will be subsequently followed for 90 days. The primary outcome is the proportion of normal or nonobstructive CAD diagnosed via ICA and will be assessed using a 2-sided z test to compare the patients referred for cardiac investigation with normal or nonobstructive CAD diagnosed through ICA between the intervention and control groups. Secondary outcomes include the number of angiograms avoided and the diagnostic yield of ICA. Recruitment began on January 9, 2025, and is expected to conclude in mid to late 2025. As of April 14, 2025, we have enrolled 81 participants. Data analysis will begin once data collection is completed. We expect to submit the results for publication in 2026. CarDIA-AI will be the first randomized controlled trial using AI to optimize patient selection for CCTA versus ICA, potentially improving diagnostic efficiency, avoiding unnecessary complications of ICA, and improving health care resource usage. ClinicalTrials.gov NCT06648239; https://clinicaltrials.gov/study/NCT06648239/. DERR1-10.2196/71726.
Page 13 of 15147 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.