Dual-Network Deep Learning for Accelerated Head and Neck MRI: Enhanced Image Quality and Reduced Scan Time.
Authors
Affiliations (2)
Affiliations (2)
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Philips Healthcare, Wuhan, China.
Abstract
Head-and-neck MRI faces inherent challenges, including motion artifacts and trade-offs between spatial resolution and acquisition time. We aimed to evaluate a dual-network deep learning (DL) super-resolution method for improving image quality and reducing scan time in T1- and T2-weighted head-and-neck MRI. In this prospective study, 97 patients with head-and-neck masses were enrolled at xx from August 2023 to August 2024. After exclusions, 58 participants underwent paired conventional and accelerated T1WI and T2WI MRI sequences, with the accelerated sequences being reconstructed using a dual-network DL framework for super-resolution. Image quality was assessed both quantitatively (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR], contrast ratio [CR]) and qualitatively by two blinded radiologists using a 5-point Likert scale for image sharpness, lesion conspicuity, structure delineation, and artifacts. Wilcoxon signed-rank tests were used to compare paired outcomes. Among 58 participants (34 men, 24 women; mean age 51.37 ± 13.24 years), DL reconstruction reduced scan times by 46.3% (T1WI) and 26.9% (T2WI). Quantitative analysis showed significant improvements in SNR (T1WI: 26.33 vs. 20.65; T2WI: 14.14 vs. 11.26) and CR (T1WI: 0.20 vs. 0.18; T2WI: 0.34 vs. 0.30; all p < 0.001), with comparable CNR (p > 0.05). Qualitatively, image sharpness, lesion conspicuity, and structure delineation improved significantly (p < 0.05), while artifact scores remained similar (all p > 0.05). The dual-network DL method significantly enhanced image quality and reduced scan times in head-and-neck MRI while maintaining diagnostic performance comparable to conventional methods. This approach offers potential for improved workflow efficiency and patient comfort.