Sort by:
Page 129 of 1621612 results

Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging.

Liu Y, Cui ZX, Qin S, Liu C, Zheng H, Wang H, Zhou Y, Liang D, Zhu Y

pubmed logopapersJun 1 2025
Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ mapping sequence. The $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ parametric maps close to the reference maps, even at a high acceleration rate of 14.

A Foundation Model for Lesion Segmentation on Brain MRI With Mixture of Modality Experts.

Zhang X, Ou N, Doga Basaran B, Visentin M, Qiao M, Gu R, Matthews PM, Liu Y, Ye C, Bai W

pubmed logopapersJun 1 2025
Brain lesion segmentation is crucial for neurological disease research and diagnosis. As different types of lesions exhibit distinct characteristics on different imaging modalities, segmentation methods are typically developed in a task-specific manner, where each segmentation model is tailored to a specific lesion type and modality. However, the use of task-specific models requires predetermination of the lesion type and imaging modality, which complicates their deployment in real-world scenarios. In this work, we propose a universal foundation model for brain lesion segmentation on magnetic resonance imaging (MRI), which can automatically segment different types of brain lesions given input of various MRI modalities. We develop a novel Mixture of Modality Experts (MoME) framework with multiple expert networks attending to different imaging modalities. A hierarchical gating network is proposed to combine the expert predictions and foster expertise collaboration. Moreover, to avoid the degeneration of each expert network, we introduce a curriculum learning strategy during training to preserve the specialisation of each expert. In addition to MoME, to handle the combination of multiple input modalities, we propose MoME+, which uses a soft dispatch network for input modality routing. We evaluated the proposed method on nine brain lesion datasets, encompassing five imaging modalities and eight lesion types. The results show that our model outperforms state-of-the-art universal models for brain lesion segmentation and achieves promising generalisation performance onto unseen datasets.

RS-MAE: Region-State Masked Autoencoder for Neuropsychiatric Disorder Classifications Based on Resting-State fMRI.

Ma H, Xu Y, Tian L

pubmed logopapersJun 1 2025
Dynamic functional connectivity (DFC) extracted from resting-state functional magnetic resonance imaging (fMRI) has been widely used for neuropsychiatric disorder classifications. However, serious information redundancy within DFC matrices can significantly undermine the performance of classification models based on them. Moreover, traditional deep models cannot adapt well to connectivity-like data, and insufficient training samples further hinder their effective training. In this study, we proposed a novel region-state masked autoencoder (RS-MAE) for proficient representation learning based on DFC matrices and ultimately neuropsychiatric disorder classifications based on fMRI. Three strategies were taken to address the aforementioned limitations. First, masked autoencoder (MAE) was introduced to reduce redundancy within DFC matrices and learn effective representations of human brain function simultaneously. Second, region-state (RS) patch embedding was proposed to replace space-time patch embedding in video MAE to adapt to DFC matrices, in which only topological locality, rather than spatial locality, exists. Third, random state concatenation (RSC) was introduced as a DFC matrix augmentation approach, to alleviate the problem of training sample insufficiency. Neuropsychiatric disorder classifications were attained by fine-tuning the pretrained encoder included in RS-MAE. The performance of the proposed RS-MAE was evaluated on four publicly available datasets, achieving accuracies of 76.32%, 77.25%, 88.87%, and 76.53% for the attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), Alzheimer's disease (AD), and schizophrenia (SCZ) classification tasks, respectively. These results demonstrate the efficacy of the RS-MAE as a proficient deep learning model for neuropsychiatric disorder classifications.

Development and validation of a combined clinical and MRI-based biomarker model to differentiate mild cognitive impairment from mild Alzheimer's disease.

Hosseini Z, Mohebbi A, Kiani I, Taghilou A, Mohammadjafari A, Aghamollaii V

pubmed logopapersJun 1 2025
Two of the most common complaints seen in neurology clinics are Alzheimer's disease (AD) and mild cognitive impairment (MCI), characterized by similar symptoms. The aim of this study was to develop and internally validate the diagnostic value of combined neurological and radiological predictors in differentiating mild AD from MCI as the outcome variable, which helps in preventing AD development. A cross-sectional study of 161 participants was conducted in a general healthcare setting, including 30 controls, 71 mild AD, and 60 MCI. Binary logistic regression was used to identify predictors of interest, with collinearity assessment conducted prior to model development. Model performance was assessed through calibration, shrinkage, and decision-curve analyses. Finally, the combined clinical and radiological model was compared to models utilizing only clinical or radiological predictors. The final model included age, sex, education status, Montreal cognitive assessment, Global Cerebral Atrophy Index, Medial Temporal Atrophy Scale, mean hippocampal volume, and Posterior Parietal Atrophy Index, with the area under the curve of 0.978 (0.934-0.996). Internal validation methods did not show substantial reduction in diagnostic performance. Combined model showed higher diagnostic performance compared to clinical and radiological models alone. Decision curve analysis highlighted the usefulness of this model for differentiation across all probability levels. A combined clinical-radiological model has excellent diagnostic performance in differentiating mild AD from MCI. Notably, the model leveraged straightforward neuroimaging markers, which are relatively simple to measure and interpret, suggesting that they could be integrated into practical, formula-driven diagnostic workflows without requiring computationally intensive deep learning models.

Adaptive Breast MRI Scanning Using AI.

Eskreis-Winkler S, Bhowmik A, Kelly LH, Lo Gullo R, D'Alessio D, Belen K, Hogan MP, Saphier NB, Sevilimedu V, Sung JS, Comstock CE, Sutton EJ, Pinker K

pubmed logopapersJun 1 2025
Background MRI protocols typically involve many imaging sequences and often require too much time. Purpose To simulate artificial intelligence (AI)-directed stratified scanning for screening breast MRI with various triage thresholds and evaluate its diagnostic performance against that of the full breast MRI protocol. Materials and Methods This retrospective reader study included consecutive contrast-enhanced screening breast MRI examinations performed between January 2013 and January 2019 at three regional cancer sites. In this simulation study, an in-house AI tool generated a suspicion score for subtraction maximum intensity projection images during a given MRI examination, and the score was used to determine whether to proceed with the full MRI protocol or end the examination early (abbreviated breast MRI [AB-MRI] protocol). Examinations with suspicion scores under the 50th percentile were read using both the AB-MRI protocol (ie, dynamic contrast-enhanced MRI scans only) and the full MRI protocol. Diagnostic performance metrics for screening with various AI triage thresholds were compared with those for screening without AI triage. Results Of 863 women (mean age, 52 years ± 10 [SD]; 1423 MRI examinations), 51 received a cancer diagnosis within 12 months of screening. The diagnostic performance metrics for AI-directed stratified scanning that triaged 50% of examinations to AB-MRI versus full MRI protocol scanning were as follows: sensitivity, 88.2% (45 of 51; 95% CI: 79.4, 97.1) versus 86.3% (44 of 51; 95% CI: 76.8, 95.7); specificity, 80.8% (1108 of 1372; 95% CI: 78.7, 82.8) versus 81.4% (1117 of 1372; 95% CI: 79.4, 83.5); positive predictive value 3 (ie, percent of biopsies yielding cancer), 23.6% (43 of 182; 95% CI: 17.5, 29.8) versus 24.7% (42 of 170; 95% CI: 18.2, 31.2); cancer detection rate (per 1000 examinations), 31.6 (95% CI: 22.5, 40.7) versus 30.9 (95% CI: 21.9, 39.9); and interval cancer rate (per 1000 examinations), 4.2 (95% CI: 0.9, 7.6) versus 4.9 (95% CI: 1.3, 8.6). Specificity decreased by no more than 2.7 percentage points with AI triage. There were no AI-triaged examinations for which conducting the full MRI protocol would have resulted in additional cancer detection. Conclusion AI-directed stratified MRI decreased simulated scan times while maintaining diagnostic performance. © RSNA, 2025 <i>Supplemental material is available for this article.</i> See also the editorial by Strand in this issue.

3-D contour-aware U-Net for efficient rectal tumor segmentation in magnetic resonance imaging.

Lu Y, Dang J, Chen J, Wang Y, Zhang T, Bai X

pubmed logopapersJun 1 2025
Magnetic resonance imaging (MRI), as a non-invasive detection method, is crucial for the clinical diagnosis and treatment plan of rectal cancer. However, due to the low contrast of rectal tumor signal in MRI, segmentation is often inaccurate. In this paper, we propose a new three-dimensional rectal tumor segmentation method CAU-Net based on T2-weighted MRI images. The method adopts a convolutional neural network to extract multi-scale features from MRI images and uses a Contour-Aware decoder and attention fusion block (AFB) for contour enhancement. We also introduce adversarial constraint to improve augmentation performance. Furthermore, we construct a dataset of 108 MRI-T2 volumes for the segmentation of locally advanced rectal cancer. Finally, CAU-Net achieved a DSC of 0.7112 and an ASD of 2.4707, which outperforms other state-of-the-art methods. Various experiments on this dataset show that CAU-Net has high accuracy and efficiency in rectal tumor segmentation. In summary, proposed method has important clinical application value and can provide important support for medical image analysis and clinical treatment of rectal cancer. With further development and application, this method has the potential to improve the accuracy of rectal cancer diagnosis and treatment.

MRI-based Radiomics for Predicting Prostate Cancer Grade Groups: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies.

Lomer NB, Ashoobi MA, Ahmadzadeh AM, Sotoudeh H, Tabari A, Torigian DA

pubmed logopapersJun 1 2025
Prostate cancer (PCa) is the second most common cancer among men and a leading cause of cancer-related mortalities. Radiomics has shown promising performances in the classification of PCa grade group (GG) in several studies. Here, we aimed to systematically review and meta-analyze the performance of radiomics in predicting GG in PCa. Adhering to PRISMA-DTA guidelines, we included studies employing magnetic resonance imaging-derived radiomics for predicting GG, with histopathologic evaluations as the reference standard. Databases searched included Web of Sciences, PubMed, Scopus, and Embase. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and METhodological RadiomICs Score (METRICS) tools were used for quality assessment. Pooled estimates for sensitivity, specificity, likelihood ratios, diagnostic odds ratio, and area under the curve (AUC) were calculated. Cochran's Q and I-squared tests assessed heterogeneity, while meta-regression, subgroup analysis, and sensitivity analysis addressed potential sources. Publication bias was evaluated using Deek's funnel plot, while clinical applicability was assessed with Fagan nomograms and likelihood ratio scattergrams. Data were extracted from 43 studies involving 9983 patients. Radiomics models demonstrated high accuracy in predicting GG. Patient-based analyses yielded AUCs of 0.93 for GG≥2, 0.91 for GG≥3, and 0.93 for GG≥4. Lesion-based analyses showed AUCs of 0.84 for GG≥2 and 0.89 for GG≥3. Significant heterogeneity was observed, and meta-regression identified sources of heterogeneity. Radiomics model showed moderate power to exclude and confirm the GG. Radiomics appears to be an accurate noninvasive tool for predicting PCa GG. It improves the performance of standard diagnostic methods, enhancing clinical decision-making.

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Wu X, Wang J, Chen C, Cai W, Guo Y, Guo K, Chen Y, Shi Y, Chen J, Lin X, Jiang X

pubmed logopapersJun 1 2025
The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.

Deep Learning Radiomics Nomogram Based on MRI for Differentiating between Borderline Ovarian Tumors and Stage I Ovarian Cancer: A Multicenter Study.

Wang X, Quan T, Chu X, Gao M, Zhang Y, Chen Y, Bai G, Chen S, Wei M

pubmed logopapersJun 1 2025
To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively. This retrospective multicenter study enrolled 279 patients from three centers, divided into a training set (n = 207) and an external test set (n = 72). The intra- and peritumoral radiomics analysis was employed to develop a combined radiomics model. A deep learning model was constructed based on the largest orthogonal slices of the tumor volume, and a clinical model was constructed using independent clinical predictors. The DLRN was then constructed by integrating deep learning, intra- and peritumoral radiomics, and clinical predictors. For comparison, an original radiomics model based solely on tumor volume (excluding the peritumoral area) was also constructed. All models were validated through 10-fold cross-validation and external testing, and their predictive performance was evaluated by the area under the receiver operating characteristic curve (AUC). The DLRN demonstrated superior performance across the 10-fold cross-validation, with the highest AUC of 0.825±0.082. On the external test set, the DLRN significantly outperformed the clinical model and the original radiomics model (AUC = 0.819 vs. 0.708 and 0.670, P = 0.047 and 0.015, respectively). Furthermore, the combined radiomics model performed significantly better than the original radiomics model (AUC = 0.778 vs. 0.670, P = 0.043). The DLRN exhibited promising performance in distinguishing BOTs from stage I EOC preoperatively, thus potentially assisting clinical decision-making.

ChatGPT-4o's Performance in Brain Tumor Diagnosis and MRI Findings: A Comparative Analysis with Radiologists.

Ozenbas C, Engin D, Altinok T, Akcay E, Aktas U, Tabanli A

pubmed logopapersJun 1 2025
To evaluate the accuracy of ChatGPT-4o in identifying magnetic resonance imaging (MRI) findings and diagnosing brain tumors by comparing its performance with that of experienced radiologists. This retrospective study included 46 patients with pathologically confirmed brain tumors who underwent preoperative MRI between January 2021 and October 2024. Two experienced radiologists and ChatGPT 4o independently evaluated the anonymized MRI images. Eight questions focusing on MRI sequences, lesion characteristics, and diagnoses were answered. ChatGPT-4o's responses were compared to those of the radiologists and the pathology outcomes. Statistical analyses were performed, which included accuracy, sensitivity, specificity, and the McNemar test, with p<0.05 considered to indicate a statistically significant difference. ChatGPT-4o successfully identified 44 of the 46 (95.7%) lesions; it achieved 88.3% accuracy in identifying MRI sequences, 81% in perilesional edema, 79.5% in signal characteristics, and 82.2% in contrast enhancement. However, its accuracy in localizing lesions was 53.6% and that in distinguishing extra-axial from intra-axial lesions was 26.3%. As such, ChatGPT-4o achieved success rates of 56.8% and 29.5% for differential diagnoses and most likely diagnoses when compared to 93.2-90.9% and 70.5-65.9% for radiologists, respectively (p<0.005). ChatGPT-4o demonstrated high accuracy in identifying certain MRI features but underperformed in diagnostic tasks in comparison with the radiologists. Despite its current limitations, future updates and advancements have the potential to enable large language models to facilitate diagnosis and offer a reliable second opinion to radiologists.
Page 129 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.