Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Authors

Wu X,Wang J,Chen C,Cai W,Guo Y,Guo K,Chen Y,Shi Y,Chen J,Lin X,Jiang X

Affiliations (11)

  • Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Infectious, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (J.W., K.G.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Infectious, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (J.W., K.G.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (Y.C.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Pathology, Xiamen Medical College Affiliated Second Hospital, Xiamen 36100, China (Y.S.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Radiology, Yueqing People's Hospital, Wenzhou 325000, China (J.C.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].
  • Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.).
  • Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address: [email protected].

Abstract

The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.

Topics

Deep LearningRectal NeoplasmsNeoadjuvant TherapyMagnetic Resonance ImagingChemoradiotherapy, AdjuvantJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.