Sort by:
Page 125 of 3543538 results

A Novel Deep Learning Radiomics Nomogram Integrating B-Mode Ultrasound and Contrast-Enhanced Ultrasound for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer.

Niu R, Chen Z, Li Y, Fang Y, Gao J, Li J, Li S, Huang S, Zou X, Fu N, Jin Z, Shao Y, Li M, Kang Y, Wang Z

pubmed logopapersAug 4 2025
This study aimed to develop a deep learning radiomics nomogram (DLRN) that integrated B-mode ultrasound (BMUS) and contrast-enhanced ultrasound (CEUS) images for preoperative lymphovascular invasion (LVI) prediction in invasive breast cancer (IBC). Total 981 patients with IBC from three hospitals were retrospectively enrolled. Of 834 patients recruited from Hospital I, 688 were designated as the training cohort and 146 as the internal test cohort, whereas 147 patients from Hospitals II and III were assigned to constitute the external test cohort. Deep learning and handcrafted radiomics features of BMUS and CEUS images were extracted from breast cancer to construct a deep learning radiomics (DLR) signature. The DLRN was developed by integrating the DLR signature and independent clinicopathological parameters. The performance of the DLRN is evaluated with respect to discrimination, calibration, and clinical benefit. The DLRN exhibited good performance in predicting LVI, with areas under the receiver operating characteristic curves (AUCs) of 0.885 (95% confidence interval [CI,0.858-0.912), 0.914 (95% CI, 0.868-0.960) and 0.914 (95% CI, 0.867-0.960) in the training, internal test, and external test cohorts, respectively. The DLRN exhibited good stability and clinical practicability, as demonstrated by the calibration curve and decision curve analysis. In addition, the DLRN outperformed the traditional clinical model and the DLR signature for LVI prediction in the internal and external test cohorts (all p < 0.05). The DLRN exhibited good performance in predicting LVI, representing a non-invasive approach to preoperatively determining LVI status in IBC.

Conditional Diffusion Model with Anatomical-Dose Dual Constraints for End-to-End Multi-Tumor Dose Prediction

Hui Xie, Haiqin Hu, Lijuan Ding, Qing Li, Yue Sun, Tao Tan

arxiv logopreprintAug 4 2025
Radiotherapy treatment planning often relies on time-consuming, trial-and-error adjustments that heavily depend on the expertise of specialists, while existing deep learning methods face limitations in generalization, prediction accuracy, and clinical applicability. To tackle these challenges, we propose ADDiff-Dose, an Anatomical-Dose Dual Constraints Conditional Diffusion Model for end-to-end multi-tumor dose prediction. The model employs LightweightVAE3D to compress high-dimensional CT data and integrates multimodal inputs, including target and organ-at-risk (OAR) masks and beam parameters, within a progressive noise addition and denoising framework. It incorporates conditional features via a multi-head attention mechanism and utilizes a composite loss function combining MSE, conditional terms, and KL divergence to ensure both dosimetric accuracy and compliance with clinical constraints. Evaluation on a large-scale public dataset (2,877 cases) and three external institutional cohorts (450 cases in total) demonstrates that ADDiff-Dose significantly outperforms traditional baselines, achieving an MAE of 0.101-0.154 (compared to 0.316 for UNet and 0.169 for GAN models), a DICE coefficient of 0.927 (a 6.8% improvement), and limiting spinal cord maximum dose error to within 0.1 Gy. The average plan generation time per case is reduced to 22 seconds. Ablation studies confirm that the structural encoder enhances compliance with clinical dose constraints by 28.5%. To our knowledge, this is the first study to introduce a conditional diffusion model framework for radiotherapy dose prediction, offering a generalizable and efficient solution for automated treatment planning across diverse tumor sites, with the potential to substantially reduce planning time and improve clinical workflow efficiency.

Vessel-specific reliability of artificial intelligence-based coronary artery calcium scoring on non-ECG-gated chest CT: a comparative study with ECG-gated cardiac CT.

Zhang J, Liu K, You C, Gong J

pubmed logopapersAug 4 2025
To evaluate the performance of artificial intelligence (AI)-based coronary artery calcium scoring (CACS) on non-electrocardiogram (ECG)-gated chest CT, using manual quantification as the reference standard, while characterizing per-vessel reliability and clinical risk classification impacts. Retrospective study of 290 patients (June 2023-2024) with paired non-ECG-gated chest CT and ECG-gated cardiac CT (median time was 2 days). AI-based CACS and manual CACS (CACS_man) were compared using intraclass correlation coefficient (ICC) and weighted Cohen's kappa (3,1). Error types, anatomical distributions, and CACS of the lesions of individual arteries or segments were assessed in accordance with the Society of Cardiovascular Computed Tomography (SCCT) guidelines. The total CACS of chest CT demonstrated excellent concordance with CACS_man (ICC = 0.87, 95 % CI 0.84-0.90). Non-ECG-gated chest showed a 7.5-fold increased risk misclassification rate compared to ECG-gated cardiac CT (41.4 % vs. 5.5 %), with 35.5 % overclassification and 5.9 % underclassification. Vessel-specific analysis revealed paradoxical reliability of the left anterior descending artery (LAD) due to stent misclassification in four cases (ICC = 0.93 on chest CT vs 0.82 on cardiac CT), while the right coronary artery (RCA) demonstrated suboptimal performance with ICCs ranging from 0.60 to 0.68. Chest CT exhibited higher false-positive (1.9 % vs 0.5 %) and false-negative rates (14.4 % vs 4.3 %). False positive mainly derived from image noise in proximal LAD/RCA (median CACS 5.97 vs 3.45) and anatomical error, while false negatives involved RCA microcalcifications (median CACS 2.64). AI-based non-ECG-gated chest CT demonstrates utility for opportunistic screening but requires protocol optimization to address vessel-specific limitations and mitigate 41.4 % risk misclassification rates.

A Dual Radiomic and Dosiomic Filtering Technique for Locoregional Radiation Pneumonitis Prediction in Breast Cancer Patients

Zhenyu Yang, Qian Chen, Rihui Zhang, Manju Liu, Fengqiu Guo, Minjie Yang, Min Tang, Lina Zhou, Chunhao Wang, Minbin Chen, Fang-Fang Yin

arxiv logopreprintAug 4 2025
Purpose: Radiation pneumonitis (RP) is a serious complication of intensity-modulated radiation therapy (IMRT) for breast cancer patients, underscoring the need for precise and explainable predictive models. This study presents an Explainable Dual-Omics Filtering (EDOF) model that integrates spatially localized dosiomic and radiomic features for voxel-level RP prediction. Methods: A retrospective cohort of 72 breast cancer patients treated with IMRT was analyzed, including 28 who developed RP. The EDOF model consists of two components: (1) dosiomic filtering, which extracts local dose intensity and spatial distribution features from planning dose maps, and (2) radiomic filtering, which captures texture-based features from pre-treatment CT scans. These features are jointly analyzed using the Explainable Boosting Machine (EBM), a transparent machine learning model that enables feature-specific risk evaluation. Model performance was assessed using five-fold cross-validation, reporting area under the curve (AUC), sensitivity, and specificity. Feature importance was quantified by mean absolute scores, and Partial Dependence Plots (PDPs) were used to visualize nonlinear relationships between RP risk and dual-omic features. Results: The EDOF model achieved strong predictive performance (AUC = 0.95 +- 0.01; sensitivity = 0.81 +- 0.05). The most influential features included dosiomic Intensity Mean, dosiomic Intensity Mean Absolute Deviation, and radiomic SRLGLE. PDPs revealed that RP risk increases beyond 5 Gy and rises sharply between 10-30 Gy, consistent with clinical dose thresholds. SRLGLE also captured structural heterogeneity linked to RP in specific lung regions. Conclusion: The EDOF framework enables spatially resolved, explainable RP prediction and may support personalized radiation planning to mitigate pulmonary toxicity.

Accurate and Interpretable Postmenstrual Age Prediction via Multimodal Large Language Model

Qifan Chen, Jin Cui, Cindy Duan, Yushuo Han, Yifei Shi

arxiv logopreprintAug 4 2025
Accurate estimation of postmenstrual age (PMA) at scan is crucial for assessing neonatal development and health. While deep learning models have achieved high accuracy in predicting PMA from brain MRI, they often function as black boxes, offering limited transparency and interpretability in clinical decision support. In this work, we address the dual challenge of accuracy and interpretability by adapting a multimodal large language model (MLLM) to perform both precise PMA prediction and clinically relevant explanation generation. We introduce a parameter-efficient fine-tuning (PEFT) strategy using instruction tuning and Low-Rank Adaptation (LoRA) applied to the Qwen2.5-VL-7B model. The model is trained on four 2D cortical surface projection maps derived from neonatal MRI scans. By employing distinct prompts for training and inference, our approach enables the MLLM to handle a regression task during training and generate clinically relevant explanations during inference. The fine-tuned model achieves a low prediction error with a 95 percent confidence interval of 0.78 to 1.52 weeks, while producing interpretable outputs grounded in developmental features, marking a significant step toward transparent and trustworthy AI systems in perinatal neuroscience.

Function of <sup>18</sup>F-FDG PET/CT radiomics in the detection of checkpoint inhibitor-induced liver injury (CHILI).

Huigen CMC, Coukos A, Latifyan S, Nicod Lalonde M, Schaefer N, Abler D, Depeursinge A, Prior JO, Fraga M, Jreige M

pubmed logopapersAug 4 2025
In the last decade, immunotherapy, particularly immune checkpoint inhibitors, has revolutionized cancer treatment and improved prognosis. However, severe checkpoint inhibitor-induced liver injury (CHILI), which can lead to treatment discontinuation or death, occurs in up to 18% of the patients. The aim of this study is to evaluate the value of PET/CT radiomics analysis for the detection of CHILI. Patients with CHILI grade 2 or higher who underwent liver function tests and liver biopsy were retrospectively included. Minors, patients with cognitive impairments, and patients with viral infections were excluded from the study. The patients' liver and spleen were contoured on the anonymized PET/CT imaging data, followed by radiomics feature extraction. Principal component analysis (PCA) and Bonferroni corrections were used for statistical analysis and exploration of radiomics features related to CHILI. Sixteen patients were included and 110 radiomics features were extracted from PET images. Liver PCA-5 showed significance as well as one associated feature but did not remain significant after Bonferroni correction. Spleen PCA-5 differed significantly between CHILI and non-CHILI patients even after Bonferroni correction, possibly linked to the higher metabolic function of the spleen in autoimmune diseases due to the recruitment of immune cells. This pilot study identified statistically significant differences in PET-derived radiomics features of the spleen and observable changes in the liver on PET/CT scans before and after the onset of CHILI. Identifying these features could aid in diagnosing or predicting CHILI, potentially enabling personalized treatment. Larger multicenter prospective studies are needed to confirm these findings and develop automated detection methods.

Glioblastoma Overall Survival Prediction With Vision Transformers

Yin Lin, iccardo Barbieri, Domenico Aquino, Giuseppe Lauria, Marina Grisoli, Elena De Momi, Alberto Redaelli, Simona Ferrante

arxiv logopreprintAug 4 2025
Glioblastoma is one of the most aggressive and common brain tumors, with a median survival of 10-15 months. Predicting Overall Survival (OS) is critical for personalizing treatment strategies and aligning clinical decisions with patient outcomes. In this study, we propose a novel Artificial Intelligence (AI) approach for OS prediction using Magnetic Resonance Imaging (MRI) images, exploiting Vision Transformers (ViTs) to extract hidden features directly from MRI images, eliminating the need of tumor segmentation. Unlike traditional approaches, our method simplifies the workflow and reduces computational resource requirements. The proposed model was evaluated on the BRATS dataset, reaching an accuracy of 62.5% on the test set, comparable to the top-performing methods. Additionally, it demonstrated balanced performance across precision, recall, and F1 score, overcoming the best model in these metrics. The dataset size limits the generalization of the ViT which typically requires larger datasets compared to convolutional neural networks. This limitation in generalization is observed across all the cited studies. This work highlights the applicability of ViTs for downsampled medical imaging tasks and establishes a foundation for OS prediction models that are computationally efficient and do not rely on segmentation.

Incorporating Artificial Intelligence into Fracture Risk Assessment: Using Clinical Imaging to Predict the Unpredictable.

Kong SH

pubmed logopapersAug 4 2025
Artificial intelligence (AI) is increasingly being explored as a complementary tool to traditional fracture risk assessment methods. Conventional approaches, such as bone mineral density measurement and established clinical risk calculators, provide populationlevel stratification but often fail to capture the structural nuances of bone fragility. Recent advances in AI-particularly deep learning techniques applied to imaging-enable opportunistic screening and individualized risk estimation using routinely acquired radiographs and computed tomography (CT) data. These models demonstrate improved discrimination for osteoporotic fracture detection and risk prediction, supporting applications such as time-to-event modeling and short-term prognosis. CT- and radiograph-based models have shown superiority over conventional metrics in diverse cohorts, while innovations like multitask learning and survival plots contribute to enhanced interpretability and patient-centered communication. Nevertheless, challenges related to model generalizability, data bias, and automation bias persist. Successful clinical integration will require rigorous external validation, transparent reporting, and seamless embedding into electronic medical systems. This review summarizes recent advances in AI-driven fracture assessment, critically evaluates their clinical promise, and outlines a roadmap for translation into real-world practice.

Deep Learning Reconstruction for T2 Weighted Turbo-Spin-Echo Imaging of the Pelvis: Prospective Comparison With Standard T2-Weighted TSE Imaging With Respect to Image Quality, Lesion Depiction, and Acquisition Time.

Sussman MS, Cui L, Tan SBM, Prasla S, Wah-Kahn T, Nickel D, Jhaveri KS

pubmed logopapersAug 4 2025
In pelvic MRI, Turbo Spin Echo (TSE) pulse sequences are used for T2-weighted imaging. However, its lengthy acquisition time increases the potential for artifacts. Deep learning (DL) reconstruction achieves reduced scan times without the degradation in image quality associated with other accelerated techniques. Unfortunately, a comprehensive assessment of DL-reconstruction in pelvic MRI has not been performed. The objective of this prospective study was to compare the performance of DL-TSE and conventional TSE pulse sequences in a broad spectrum of pelvic MRI indications. Fifty-five subjects (33 females and 22 males) were scanned at 3 T using DL-TSE and conventional TSE sequences in axial and/or oblique acquisition planes. Two radiologists independently assessed image quality in 6 categories: edge definition, vessel margin sharpness, T2 Contrast Dynamic Range, artifacts, overall image quality, and lesion features. The contrast ratio was calculated for quantitative assessment. A two-tailed sign test was used for assessment. The 2 readers found DL-TSE to deliver equal or superior image quality than conventional TSE in most cases. There were only 3 instances out of 24 where conventional TSE was scored as providing better image quality. Readers agreed on DL-TSE superiority/inferiority/equivalence in 67% of categories in the axial plane and 75% in the oblique plane. DL-TSE also demonstrated a better contrast ratio in 75% of cases. DL-TSE reduced scan time by approximately 50%. DL-accelerated TSE sequences generally provide equal or better image quality in pelvic MRI than standard TSE with significantly reduced acquisition times.

A Novel Dual-Output Deep Learning Model Based on InceptionV3 for Radiographic Bone Age and Gender Assessment.

Rayed B, Amasya H, Sezdi M

pubmed logopapersAug 4 2025
Hand-wrist radiographs are used in bone age prediction. Computer-assisted clinical decision support systems offer solutions to the limitations of the radiographic bone age assessment methods. In this study, a multi-output prediction model was designed to predict bone age and gender using digital hand-wrist radiographs. The InceptionV3 architecture was used as the backbone, and the model was trained and tested using the open-access dataset of 2017 RSNA Pediatric Bone Age Challenge. A total of 14,048 samples were divided to training, validation, and testing subsets with the ratio of 7:2:1, and additional specialized convolutional neural network layers were implemented for robust feature management, such as Squeeze-and-Excitation block. The proposed model achieved a mean squared error of approximately 25 and a mean absolute error of 3.1 for predicting bone age. In gender classification, an accuracy of 95% and an area under the curve of 97% were achieved. The intra-class correlation coefficient for the continuous bone age predictions was found to be 0.997, while the Cohen's <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>κ</mi></math> coefficient for the gender predictions was found to be 0.898 ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo></mrow> </math> 0.001). The proposed model aims to increase model efficiency by identifying common and discrete features. Based on the results, the proposed algorithm is promising; however, the mid-high-end hardware requirement may be a limitation for its use on local machines in the clinic. The future studies may consider increasing the dataset and simplification of the algorithms.
Page 125 of 3543538 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.