Sort by:
Page 122 of 6446438 results

You Zhou, Lijiang Chen, Shuchang Lyu, Guangxia Cui, Wenpei Bai, Zheng Zhou, Meng Li, Guangliang Cheng, Huiyu Zhou, Qi Zhao

arxiv logopreprintSep 28 2025
Federated learning enables collaborative training of machine learning models among different clients while ensuring data privacy, emerging as the mainstream for breaking data silos in the healthcare domain. However, the imbalance of medical resources, data corruption or improper data preservation may lead to a situation where different clients possess medical images of different modality. This heterogeneity poses a significant challenge for cross-domain medical image segmentation within the federated learning framework. To address this challenge, we propose a new Federated Domain Adaptation (FedDA) segmentation training framework. Specifically, we propose a feature-level adversarial learning among clients by aligning feature maps across clients through embedding an adversarial training mechanism. This design can enhance the model's generalization on multiple domains and alleviate the negative impact from domain-shift. Comprehensive experiments on three medical image datasets demonstrate that our proposed FedDA substantially achieves cross-domain federated aggregation, endowing single modality client with cross-modality processing capabilities, and consistently delivers robust performance compared to state-of-the-art federated aggregation algorithms in objective and subjective assessment. Our code are available at https://github.com/GGbond-study/FedDA.

Rakesh Thakur, Yusra Tariq, Rakesh Chandra Joshi

arxiv logopreprintSep 28 2025
Solving tough clinical questions that require both image and text understanding is still a major challenge in healthcare AI. In this work, we propose Q-FSRU, a new model that combines Frequency Spectrum Representation and Fusion (FSRU) with a method called Quantum Retrieval-Augmented Generation (Quantum RAG) for medical Visual Question Answering (VQA). The model takes in features from medical images and related text, then shifts them into the frequency domain using Fast Fourier Transform (FFT). This helps it focus on more meaningful data and filter out noise or less useful information. To improve accuracy and ensure that answers are based on real knowledge, we add a quantum inspired retrieval system. It fetches useful medical facts from external sources using quantum-based similarity techniques. These details are then merged with the frequency-based features for stronger reasoning. We evaluated our model using the VQA-RAD dataset, which includes real radiology images and questions. The results showed that Q-FSRU outperforms earlier models, especially on complex cases needing image text reasoning. The mix of frequency and quantum information improves both performance and explainability. Overall, this approach offers a promising way to build smart, clear, and helpful AI tools for doctors.

Derek Jiu, Kiran Nijjer, Nishant Chinta, Ryan Bui, Ben Liu, Kevin Zhu

arxiv logopreprintSep 28 2025
Deep learning models are increasingly used for radiographic analysis, but their reliability is challenged by the stochastic noise inherent in clinical imaging. A systematic, cross-task understanding of how different noise types impact these models is lacking. Here, we evaluate the robustness of state-of-the-art convolutional neural networks (CNNs) to simulated quantum (Poisson) and electronic (Gaussian) noise in two key chest X-ray tasks: semantic segmentation and pulmonary disease classification. Using a novel, scalable noise injection framework, we applied controlled, clinically-motivated noise severities to common architectures (UNet, DeepLabV3, FPN; ResNet, DenseNet, EfficientNet) on public datasets (Landmark, ChestX-ray14). Our results reveal a stark dichotomy in task robustness. Semantic segmentation models proved highly vulnerable, with lung segmentation performance collapsing under severe electronic noise (Dice Similarity Coefficient drop of 0.843), signifying a near-total model failure. In contrast, classification tasks demonstrated greater overall resilience, but this robustness was not uniform. We discovered a differential vulnerability: certain tasks, such as distinguishing Pneumothorax from Atelectasis, failed catastrophically under quantum noise (AUROC drop of 0.355), while others were more susceptible to electronic noise. These findings demonstrate that while classification models possess a degree of inherent robustness, pixel-level segmentation tasks are far more brittle. The task- and noise-specific nature of model failure underscores the critical need for targeted validation and mitigation strategies before the safe clinical deployment of diagnostic AI.

Anoushka Harit, William Prew, Zhongtian Sun, Florian Markowetz

arxiv logopreprintSep 28 2025
Medical imaging foundation models must adapt over time, yet full retraining is often blocked by privacy constraints and cost. We present a continual learning framework that avoids storing patient exemplars by pairing class conditional diffusion replay with Elastic Weight Consolidation. Using a compact Vision Transformer backbone, we evaluate across eight MedMNIST v2 tasks and CheXpert. On CheXpert our approach attains 0.851 AUROC, reduces forgetting by more than 30\% relative to DER\texttt{++}, and approaches joint training at 0.869 AUROC, while remaining efficient and privacy preserving. Analyses connect forgetting to two measurable factors: fidelity of replay and Fisher weighted parameter drift, highlighting the complementary roles of replay diffusion and synaptic stability. The results indicate a practical route for scalable, privacy aware continual adaptation of clinical imaging models.

Guoquan Wei, Zekun Zhou, Liu Shi, Wenzhe Shan, Qiegen Liu

arxiv logopreprintSep 28 2025
Current models based on deep learning for low-dose CT denoising rely heavily on paired data and generalize poorly. Even the more concerned diffusion models need to learn the distribution of clean data for reconstruction, which is difficult to satisfy in medical clinical applications. At the same time, self-supervised-based methods face the challenge of significant degradation of generalizability of models pre-trained for the current dose to expand to other doses. To address these issues, this paper proposes a novel method of tunable-generalization diffusion powered by self-supervised contextual sub-data for low-dose CT reconstruction, named SuperDiff. Firstly, a contextual subdata similarity adaptive sensing strategy is designed for denoising centered on the LDCT projection domain, which provides an initial prior for the subsequent progress. Subsequently, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. The pre-trained model is used for inference reconstruction, and the pixel-level self-correcting fusion technique is proposed for fine-grained reconstruction of the image domain to enhance the image fidelity, using the initial prior and the LDCT image as a guide. In addition, the technique is flexibly applied to the generalization of upper and lower doses or even unseen doses. Dual-domain strategy cascade for self-supervised LDCT denoising, SuperDiff requires only LDCT projection domain data for training and testing. Full qualitative and quantitative evaluations on both datasets and real data show that SuperDiff consistently outperforms existing state-of-the-art methods in terms of reconstruction and generalization performance.

Pramit Saha, Joshua Strong, Divyanshu Mishra, Cheng Ouyang, J. Alison Noble

arxiv logopreprintSep 28 2025
Federated learning (FL) allows collaborative model training across healthcare sites without sharing sensitive patient data. However, real-world FL deployment is often hindered by complex operational challenges that demand substantial human efforts. This includes: (a) selecting appropriate clients (hospitals), (b) coordinating between the central server and clients, (c) client-level data pre-processing, (d) harmonizing non-standardized data and labels across clients, and (e) selecting FL algorithms based on user instructions and cross-client data characteristics. However, the existing FL works overlook these practical orchestration challenges. These operational bottlenecks motivate the need for autonomous, agent-driven FL systems, where intelligent agents at each hospital client and the central server agent collaboratively manage FL setup and model training with minimal human intervention. To this end, we first introduce an agent-driven FL framework that captures key phases of real-world FL workflows from client selection to training completion and a benchmark dubbed FedAgentBench that evaluates the ability of LLM agents to autonomously coordinate healthcare FL. Our framework incorporates 40 FL algorithms, each tailored to address diverse task-specific requirements and cross-client characteristics. Furthermore, we introduce a diverse set of complex tasks across 201 carefully curated datasets, simulating 6 modality-specific real-world healthcare environments, viz., Dermatoscopy, Ultrasound, Fundus, Histopathology, MRI, and X-Ray. We assess the agentic performance of 14 open-source and 10 proprietary LLMs spanning small, medium, and large model scales. While some agent cores such as GPT-4.1 and DeepSeek V3 can automate various stages of the FL pipeline, our results reveal that more complex, interdependent tasks based on implicit goals remain challenging for even the strongest models.

Soroosh Safari Loaliyan, Jose-Luis Ambite, Paul M. Thompson, Neda Jahanshad, Greg Ver Steeg

arxiv logopreprintSep 28 2025
Federated Learning (FL) trains models locally at each research center or clinic and aggregates only model updates, making it a natural fit for medical imaging, where strict privacy laws forbid raw data sharing. A major obstacle is scanner-induced domain shift: non-biological variations in hardware or acquisition protocols can cause models to fail on external sites. Most harmonization methods correct this shift by directly comparing data across sites, conflicting with FL's privacy constraints. Domain Generalization (DG) offers a privacy-friendly alternative - learning site-invariant representations without sharing raw data - but standard DG pipelines still assume centralized access to multi-site data, again violating FL's guarantees. This paper meets these difficulties with a straightforward integration of a Domain-Adversarial Neural Network (DANN) within the FL process. After demonstrating that a naive federated DANN fails to converge, we propose a proximal regularization method that stabilizes adversarial training among clients. Experiments on T1-weighted 3-D brain MRIs from the OpenBHB dataset, performing brain-age prediction on participants aged 6-64 y (mean 22+/-6 y; 45 percent male) in training and 6-79 y (mean 19+/-13 y; 55 percent male) in validation, show that training on 15 sites and testing on 19 unseen sites yields superior cross-site generalization over FedAvg and ERM while preserving data privacy.

Tangtangfang Fang, Jingxi Hu, Xiangjian He, Jiaqi Yang

arxiv logopreprintSep 28 2025
While diffusion models have set a new benchmark for quality in Low-Dose Computed Tomography (LDCT) denoising, their clinical adoption is critically hindered by extreme computational costs, with inference times often exceeding thousands of seconds per scan. To overcome this barrier, we introduce MAN, a Latent Diffusion Enhanced Multistage Anti-Noise Network for Efficient and High-Quality Low-Dose CT Image Denoising task. Our method operates in a compressed latent space via a perceptually-optimized autoencoder, enabling an attention-based conditional U-Net to perform the fast, deterministic conditional denoising diffusion process with drastically reduced overhead. On the LDCT and Projection dataset, our model achieves superior perceptual quality, surpassing CNN/GAN-based methods while rivaling the reconstruction fidelity of computationally heavy diffusion models like DDPM and Dn-Dp. Most critically, in the inference stage, our model is over 60x faster than representative pixel space diffusion denoisers, while remaining competitive on PSNR/SSIM scores. By bridging the gap between high fidelity and clinical viability, our work demonstrates a practical path forward for advanced generative models in medical imaging.

Xie Z, Lin Z, Sun E, Ding F, Qi J, Zhao S

pubmed logopapersSep 28 2025
Automated vertebra analysis (AVA), encompassing vertebra detection and segmentation, plays a critical role in computer-aided diagnosis, surgical planning, and postoperative evaluation in spine-related clinical workflows. Despite notable progress, AVA continues to face key challenges, including variations in the field of view (FOV), complex vertebral morphology, limited availability of high-quality annotated data, and performance degradation under domain shifts. Over the past decade, numerous studies have employed deep learning (DL) to tackle these issues, introducing advanced network architectures and innovative learning paradigms. However, the rapid evolution of these methods has not been comprehensively captured by existing surveys, resulting in a knowledge gap regarding the current state of the field. To address this, this paper presents an up-to-date review that systematically summarizes recent advances. The review begins by consolidating publicly available datasets and evaluation metrics to support standardized benchmarking. Recent DL-based AVA approaches are then analyzed from two methodological perspectives: network architecture improvement and learning strategies design. Finally, an examination of persistent technical barriers and emerging clinical needs that are shaping future research directions is provided. These include multimodal learning, domain generalization, and the integration of foundation models. As the most current survey in the field, this review provides a comprehensive and structured synthesis aimed at guiding future research toward the development of robust, generalizable, and clinically deployable AVA systems in the era of intelligent medical imaging.

Trinh Ngoc Huynh, Nguyen Duc Kien, Nguyen Hai Anh, Dinh Tran Hiep, Manuela Vaneckova, Tomas Uher, Jeroen Van Schependom, Stijn Denissen, Tran Quoc Long, Nguyen Linh Trung, Guy Nagels

arxiv logopreprintSep 28 2025
We present InfoVAE-Med3D, a latent-representation learning approach for 3D brain MRI that targets interpretable biomarkers of cognitive decline. Standard statistical models and shallow machine learning often lack power, while most deep learning methods behave as black boxes. Our method extends InfoVAE to explicitly maximize mutual information between images and latent variables, producing compact, structured embeddings that retain clinically meaningful content. We evaluate on two cohorts: a large healthy-control dataset (n=6527) with chronological age, and a clinical multiple sclerosis dataset from Charles University in Prague (n=904) with age and Symbol Digit Modalities Test (SDMT) scores. The learned latents support accurate brain-age and SDMT regression, preserve key medical attributes, and form intuitive clusters that aid interpretation. Across reconstruction and downstream prediction tasks, InfoVAE-Med3D consistently outperforms other VAE variants, indicating stronger information capture in the embedding space. By uniting predictive performance with interpretability, InfoVAE-Med3D offers a practical path toward MRI-based biomarkers and more transparent analysis of cognitive deterioration in neurological disease.
Page 122 of 6446438 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.