Sort by:
Page 119 of 2412410 results

Brain Stroke Detection and Classification Using CT Imaging with Transformer Models and Explainable AI

Shomukh Qari, Maha A. Thafar

arxiv logopreprintJul 13 2025
Stroke is one of the leading causes of death globally, making early and accurate diagnosis essential for improving patient outcomes, particularly in emergency settings where timely intervention is critical. CT scans are the key imaging modality because of their speed, accessibility, and cost-effectiveness. This study proposed an artificial intelligence framework for multiclass stroke classification (ischemic, hemorrhagic, and no stroke) using CT scan images from a dataset provided by the Republic of Turkey's Ministry of Health. The proposed method adopted MaxViT, a state-of-the-art Vision Transformer, as the primary deep learning model for image-based stroke classification, with additional transformer variants (vision transformer, transformer-in-transformer, and ConvNext). To enhance model generalization and address class imbalance, we applied data augmentation techniques, including synthetic image generation. The MaxViT model trained with augmentation achieved the best performance, reaching an accuracy and F1-score of 98.00%, outperforming all other evaluated models and the baseline methods. The primary goal of this study was to distinguish between stroke types with high accuracy while addressing crucial issues of transparency and trust in artificial intelligence models. To achieve this, Explainable Artificial Intelligence (XAI) was integrated into the framework, particularly Grad-CAM++. It provides visual explanations of the model's decisions by highlighting relevant stroke regions in the CT scans and establishing an accurate, interpretable, and clinically applicable solution for early stroke detection. This research contributed to the development of a trustworthy AI-assisted diagnostic tool for stroke, facilitating its integration into clinical practice and enhancing access to timely and optimal stroke diagnosis in emergency departments, thereby saving more lives.

The role of neuro-imaging in multiple system atrophy.

Krismer F, Seppi K, Poewe W

pubmed logopapersJul 12 2025
Neuroimaging plays a crucial role in diagnosing multiple system atrophy and monitoring progressive neurodegeneration in this fatal disease. Advanced MRI techniques and post-processing methods have demonstrated significant volume loss and microstructural changes in brain regions well known to be affected by MSA pathology. These observations can be exploited to support the differential diagnosis of MSA distinguishing it from Parkinson's disease and progressive supranuclear palsy with high sensitivity and specificity. Longitudinal studies reveal aggressive neurodegeneration in MSA, with notable atrophy rates in the cerebellum, pons, and putamen. Radiotracer imaging using PET and SPECT has shown characteristic disease-related patterns, aiding in differential diagnosis and tracking disease progression. Future research should focus on early diagnosis, particularly in prodromal stages, and the development of reliable biomarkers for clinical trials. Combining different neuroimaging modalities and machine learning algorithms can enhance diagnostic precision and provide a comprehensive understanding of MSA pathology.

Diabetic Tibial Neuropathy Prediction: Improving interpretability of Various Machine-Learning Models Based on Multimodal-Ultrasound Features Using SHAP Methodology.

Chen Y, Sun Z, Zhong H, Chen Y, Wu X, Su L, Lai Z, Zheng T, Lyu G, Su Q

pubmed logopapersJul 12 2025
This study aimed to develop and evaluate eight machine learning models based on multimodal ultrasound to precisely predict of diabetic tibial neuropathy (DTN) in patients. Additionally, the SHapley Additive exPlanations(SHAP)framework was introduced to quantify the importance of each feature variable, providing a precise and noninvasive assessment tool for DTN patients, optimizing clinical management strategies, and enhancing patient prognosis. A prospective analysis was conducted using multimodal ultrasound and clinical data from 255 suspected DTN patients who visited the Second Affiliated Hospital of Fujian Medical University between January 2024 and November 2024. Key features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Predictive models were constructed using Extreme Gradient Boosting (XGB), Logistic Regression, Support Vector Machines, k-Nearest Neighbors, Random Forest, Decision Tree, Naïve Bayes, and Neural Network. The SHAP method was employed to refine model interpretability. Furthermore, in order to verify the generalization degree of the model, this study also collected 135 patients from three other tertiary hospitals for external test. LASSO regression identified Echo intensity(EI), Cross-sectional area (CSA), Mean elasticity value(Emean), Superb microvascular imaging(SMI), and History of smoking were key features for DTN prediction. The XGB model achieved an Area Under the Curve (AUC) of 0.94, 0.83 and 0.79 in the training, internal test and external test sets, respectively. SHAP analysis highlighted the ranking significance of EI, CSA, Emean, SMI, and History of smoking. Personalized prediction explanations provided by theSHAP values demonstrated the contribution of each feature to the final prediction, and enhancing model interpretability. Furthermore, decision plots depicted how different features influenced mispredictions, thereby facilitating further model optimization or feature adjustment. This study proposed a DTN prediction model based on machine-learning algorithms applied to multimodal ultrasound data. The results indicated the superior performance of the XGB model and its interpretability was enhanced using SHAP analysis. This cost-effective and user-friendly approach provides potential support for personalized treatment and precision medicine for DTN.

Integrating Artificial Intelligence in Thyroid Nodule Management: Clinical Outcomes and Cost-Effectiveness Analysis.

Bodoque-Cubas J, Fernández-Sáez J, Martínez-Hervás S, Pérez-Lacasta MJ, Carles-Lavila M, Pallarés-Gasulla RM, Salazar-González JJ, Gil-Boix JV, Miret-Llauradó M, Aulinas-Masó A, Argüelles-Jiménez I, Tofé-Povedano S

pubmed logopapersJul 12 2025
The increasing incidence of thyroid nodules (TN) raises concerns about overdiagnosis and overtreatment. This study evaluates the clinical and economic impact of KOIOS, an FDA-approved artificial intelligence (AI) tool for the management of TN. A retrospective analysis was conducted on 176 patients who underwent thyroid surgery between May 2022 and November 2024. Ultrasound images were evaluated independently by an expert and novice operators using the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS), while KOIOS provided AI-adapted risk stratification. Sensitivity, specificity, and Receiver-Operating Curve (ROC) analysis were performed. The incremental cost-effectiveness ratio (ICER) was defined based on the number of optimal care interventions (FNAB and thyroid surgery). Both deterministic and probabilistic sensitivity analyses were conducted to evaluate model robustness. KOIOS AI demonstrated similar diagnostic performance to the expert operator (AUC: 0.794, 95% CI: 0.718-0.871 vs. 0.784, 95% CI: 0.706-0.861; p = 0.754) and significantly outperformed the novice operator (AUC: 0.619, 95% CI: 0.526-0.711; p < 0.001). ICER analysis estimated the cost per additional optimal care decision at -€8,085.56, indicating KOIOS as a dominant and cost-saving strategy when considering a third-party payer perspective over a one-year horizon. Deterministic sensitivity analysis identified surgical costs as the main drivers of variability, while probabilistic analysis consistently favored KOIOS as the optimal strategy. KOIOS AI is a cost-effective alternative, particularly in reducing overdiagnosis and overtreatment for benign TNs. Prospective, real-life studies are needed to validate these findings and explore long-term implications.

Seeing is Believing-On the Utility of CT in Phenotyping COPD.

Awan HA, Chaudhary MFA, Reinhardt JM

pubmed logopapersJul 12 2025
Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition with complicated structural and functional impairments. For decades now, chest computed tomography (CT) has been used to quantify various abnormalities related to COPD. More recently, with the newer data-driven approaches, biomarker development and validation have evolved rapidly. Studies now target multiple anatomical structures including lung parenchyma, the airways, the vasculature, and the fissures to better characterize COPD. This review explores the evolution of chest CT biomarkers in COPD, beginning with traditional thresholding approaches that quantify emphysema and airway dimensions. We then highlight some of the texture analysis efforts that have been made over the years for subtyping lung tissue. We also discuss image registration-based biomarkers that have enabled spatially-aware mechanisms for understanding local abnormalities within the lungs. More recently, deep learning has enabled automated biomarker extraction, offering improved precision in phenotype characterization and outcome prediction. We highlight the most recent of these approaches as well. Despite these advancements, several challenges remain in terms of dataset heterogeneity, model generalizability, and clinical interpretability. This review lastly provides a structured overview of these limitations and highlights future potential of CT biomarkers in personalized COPD management.

AI-powered disease progression prediction in multiple sclerosis using magnetic resonance imaging: a systematic review and meta-analysis.

Houshi S, Khodakarami Z, Shaygannejad A, Khosravi F, Shaygannejad V

pubmed logopapersJul 12 2025
Disability progression despite disease-modifying therapy remains a major challenge in multiple sclerosis (MS). Artificial intelligence (AI) models exploiting magnetic resonance imaging (MRI) promise personalized prognostication, yet their real-world accuracy is uncertain. To systematically review and meta-analyze MRI-based AI studies predicting future disability progression in MS. Five databases were searched from inception to 17 May 2025 following PRISMA. Eligible studies used MRI in an AI model to forecast changes in the Expanded Disability Status Scale (EDSS) or equivalent metrics. Two reviewers conducted study selection, data extraction, and QUADAS-2 assessment. Random-effects meta-analysis was applied when ≥3 studies reported compatible regression statistics. Twenty-one studies with 12,252 MS patients met inclusion criteria. Five used regression on continuous EDSS, fourteen classification, one time-to-event, and one both. Conventional machine learning predominated (57%), and deep learning (38%). Median classification area under the curve (AUC) was 0.78 (range 0.57-0.86); median regression root-mean-square-error (RMSE) 1.08 EDSS points. Pooled RMSE across regression studies was 1.31 (95% CI 1.02-1.60; I<sup>2</sup> = 95%). Deep learning conferred only marginal, non-significant gains over classical algorithms. External validation appeared in six studies; calibration, decision-curve analysis and code releases were seldom reported. QUADAS-2 indicated generally low patient-selection bias but frequent index-test concerns. MRI-driven AI models predict MS disability progression with moderate accuracy, but error margins that exceed one EDSS point limit individual-level utility. Harmonized endpoints, larger multicenter cohorts, rigorous external validation, and prospective clinician-in-the-loop trials are essential before routine clinical adoption.

RadientFusion-XR: A Hybrid LBP-HOG Model for COVID-19 Detection Using Machine Learning.

K V G, Gripsy JV

pubmed logopapersJul 11 2025
The rapid and accurate detection of COVID-19 (coronavirus disease 2019) from normal and pneumonia chest x-ray images is essential for timely diagnosis and treatment. The overlapping features in radiology images make it challenging for radiologists to distinguish COVID-19 cases. This research study investigates the effectiveness of combining local binary pattern (LBP) and histogram of oriented gradients (HOG) features with machine learning algorithms to differentiate COVID-19 from normal and pneumonia cases using chest x-rays. The proposed hybrid fusion model "RadientFusion-XR" utilizes LBP and HOG features with shallow learning algorithms. The proposed hybrid HOG-LBP fusion model, RadientFusion-XR, detects COVID-19 cases from normal and pneumonia classes. This fusion model provides a comprehensive representation, enabling more precise differentiation among the three classes. This methodology presents a promising and efficient tool for early COVID-19 and pneumonia diagnosis in clinical settings, with potential integration into automated diagnostic systems. The findings highlight the potential of this hybrid feature extraction and a shallow learning approach to improve diagnostic accuracy in chest x-ray analysis significantly. The hybrid model using LBP and HOG features with an ensemble model achieved an exceptional accuracy of 99% for binary class (COVID-19, normal) and 97% for multi-class (COVID-19, normal, pneumonia), respectively. These results demonstrate the efficacy of our hybrid approach in enhancing feature representation and achieving superior classification accuracy. The proposed RadientFusion-XR model with hybrid feature extraction and shallow learning approach significantly increases the accuracy of COVID-19 and pneumonia diagnoses from chest x-rays. The interpretable nature of RadientFusion-XR, alongside its effectiveness and explainability, makes it a valuable tool for clinical applications, fostering trust and enabling informed decision-making by healthcare professionals.

A View-Agnostic Deep Learning Framework for Comprehensive Analysis of 2D-Echocardiography

Anisuzzaman, D. M., Malins, J. G., Jackson, J. I., Lee, E., Naser, J. A., Rostami, B., Bird, J. G., Spiegelstein, D., Amar, T., Ngo, C. C., Oh, J. K., Pellikka, P. A., Thaden, J. J., Lopez-Jimenez, F., Poterucha, T. J., Friedman, P. A., Pislaru, S., Kane, G. C., Attia, Z. I.

medrxiv logopreprintJul 11 2025
Echocardiography traditionally requires experienced operators to select and interpret clips from specific viewing angles. Clinical decision-making is therefore limited for handheld cardiac ultrasound (HCU), which is often collected by novice users. In this study, we developed a view-agnostic deep learning framework to estimate left ventricular ejection fraction (LVEF), patient age, and patient sex from any of several views containing the left ventricle. Model performance was: (1) consistently strong across retrospective transthoracic echocardiography (TTE) datasets; (2) comparable between prospective HCU versus TTE (625 patients; LVEF r2 0.80 vs. 0.86, LVEF [> or [&le;]40%] AUC 0.981 vs. 0.993, age r2 0.85 vs. 0.87, sex classification AUC 0.985 vs. 0.996); (3) comparable between prospective HCU data collected by experts versus novice users (100 patients; LVEF r2 0.78 vs. 0.66, LVEF AUC 0.982 vs. 0.966). This approach may broaden the clinical utility of echocardiography by lessening the need for user expertise in image acquisition.

Multivariate whole brain neurodegenerative-cognitive-clinical severity mapping in the Alzheimer's disease continuum using explainable AI

Murad, T., Miao, H., Thakuri, D. S., Darekar, G., Chand, G.

medrxiv logopreprintJul 11 2025
Neurodegeneration and cognitive impairment are commonly reported in Alzheimers disease (AD); however, their multivariate links are not well understood. To map the multivariate relationships between whole brain neurodegenerative (WBN) markers, global cognition, and clinical severity in the AD continuum, we developed the explainable artificial intelligence (AI) methods, validated on semi-simulated data, and applied the outperforming method systematically to large-scale experimental data (N=1,756). The outperforming explainable AI method showed robust performance in predicting cognition from regional WBN markers and identified the ground-truth simulated dominant brain regions contributing to cognition. This method also showed excellent performance on experimental data and identified several prominent WBN regions hierarchically and simultaneously associated with cognitive declines across the AD continuum. These multivariate regional features also correlated with clinical severity, suggesting their clinical relevance. Overall, this study innovatively mapped the multivariate regional WBN-cognitive-clinical severity relationships in the AD continuum, thereby significantly advancing AD-relevant neurobiological pathways.

Advancing Rare Neurological Disorder Diagnosis: Addressing Challenges with Systematic Reviews and AI-Driven MRI Meta-Trans Learning Framework for NeuroDegenerative Disorders.

Gupta A, Malhotra D

pubmed logopapersJul 11 2025
Neurological Disorders (ND) affect a large portion of the global population, impacting the brain, spinal cord, and nerves. These disorders fall into categories such as NeuroDevelopmental (NDD), NeuroBiological (NBD), and NeuroDegenerative (ND<sub>e</sub>) disorders, which range from common to rare conditions. While Artificial Intelligence (AI) has advanced healthcare diagnostics, training Machine Learning (ML) and Deep Learning (DL) models for early detection of rare neurological disorders remains a challenge due to limited patient data. This data scarcity poses a significant public health issue. Meta_Trans Learning (M<sub>TA</sub>L), which integrates Meta-Learning (M<sub>t</sub>L) and Transfer Learning (TL), offers a promising solution by leveraging small datasets to extract expert patterns, generalize findings, and reduce AI bias in healthcare. This research systematically reviews studies from 2018 to 2024 to explore how ML and M<sub>TA</sub>L techniques are applied in diagnosing NDD, NBD, and ND<sub>e</sub> disorders. It also provides statistical and parametric analysis of ML and DL methods for neurological disorder diagnosis. Lastly, the study introduces a MRI-based ND<sub>e</sub>-M<sub>TA</sub>L framework to aid healthcare professionals in early detection of rare neuro disorders, aiming to enhance diagnostic accuracy and advance healthcare practices.
Page 119 of 2412410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.