AI-powered disease progression prediction in multiple sclerosis using magnetic resonance imaging: a systematic review and meta-analysis.
Authors
Affiliations (4)
Affiliations (4)
- Isfahan Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.
Abstract
Disability progression despite disease-modifying therapy remains a major challenge in multiple sclerosis (MS). Artificial intelligence (AI) models exploiting magnetic resonance imaging (MRI) promise personalized prognostication, yet their real-world accuracy is uncertain. To systematically review and meta-analyze MRI-based AI studies predicting future disability progression in MS. Five databases were searched from inception to 17 May 2025 following PRISMA. Eligible studies used MRI in an AI model to forecast changes in the Expanded Disability Status Scale (EDSS) or equivalent metrics. Two reviewers conducted study selection, data extraction, and QUADAS-2 assessment. Random-effects meta-analysis was applied when ≥3 studies reported compatible regression statistics. Twenty-one studies with 12,252 MS patients met inclusion criteria. Five used regression on continuous EDSS, fourteen classification, one time-to-event, and one both. Conventional machine learning predominated (57%), and deep learning (38%). Median classification area under the curve (AUC) was 0.78 (range 0.57-0.86); median regression root-mean-square-error (RMSE) 1.08 EDSS points. Pooled RMSE across regression studies was 1.31 (95% CI 1.02-1.60; I<sup>2</sup> = 95%). Deep learning conferred only marginal, non-significant gains over classical algorithms. External validation appeared in six studies; calibration, decision-curve analysis and code releases were seldom reported. QUADAS-2 indicated generally low patient-selection bias but frequent index-test concerns. MRI-driven AI models predict MS disability progression with moderate accuracy, but error margins that exceed one EDSS point limit individual-level utility. Harmonized endpoints, larger multicenter cohorts, rigorous external validation, and prospective clinician-in-the-loop trials are essential before routine clinical adoption.