Sort by:
Page 108 of 1411410 results

Multimodal data integration for biologically-relevant artificial intelligence to guide adjuvant chemotherapy in stage II colorectal cancer.

Xie C, Ning Z, Guo T, Yao L, Chen X, Huang W, Li S, Chen J, Zhao K, Bian X, Li Z, Huang Y, Liang C, Zhang Q, Liu Z

pubmed logopapersJun 4 2025
Adjuvant chemotherapy provides a limited survival benefit (<5%) for patients with stage II colorectal cancer (CRC) and is suggested for high-risk patients. Given the heterogeneity of stage II CRC, we aimed to develop a clinically explainable artificial intelligence (AI)-powered analyser to identify radiological phenotypes that would benefit from chemotherapy. Multimodal data from patients with CRC across six cohorts were collected, including 405 patients from the Guangdong Provincial People's Hospital for model development and 153 patients from the Yunnan Provincial Cancer Centre for validation. RNA sequencing data were used to identify the differentially expressed genes in the two radiological clusters. Histopathological patterns were evaluated to bridge the gap between the imaging and genetic information. Finally, we investigated the discovered morphological patterns of mouse models to observe imaging features. The survival benefit of chemotherapy varied significantly among the AI-powered radiological clusters [interaction hazard ratio (iHR) = 5.35, (95% CI: 1.98, 14.41), adjusted P<sub>interaction</sub> = 0.012]. Distinct biological pathways related to immune and stromal cell abundance were observed between the clusters. The observation only (OO)-preferable cluster exhibited higher necrosis, haemorrhage, and tortuous vessels, whereas the adjuvant chemotherapy (AC)-preferable cluster exhibited vessels with greater pericyte coverage, allowing for a more enriched infiltration of B, CD4<sup>+</sup>-T, and CD8<sup>+</sup>-T cells into the core tumoural areas. Further experiments confirmed that changes in vessel morphology led to alterations in predictive imaging features. The developed explainable AI-powered analyser effectively identified patients with stage II CRC with improved overall survival after receiving adjuvant chemotherapy, thereby contributing to the advancement of precision oncology. This work was funded by the National Science Fund of China (81925023, 82302299, and U22A2034), Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (2022B1212010011), and High-level Hospital Construction Project (DFJHBF202105 and YKY-KF202204).

Long-Term Prognostic Implications of Thoracic Aortic Calcification on CT Using Artificial Intelligence-Based Quantification in a Screening Population: A Two-Center Study.

Lee JE, Kim NY, Kim YH, Kwon Y, Kim S, Han K, Suh YJ

pubmed logopapersJun 4 2025
<b>BACKGROUND.</b> The importance of including the thoracic aortic calcification (TAC), in addition to coronary artery calcification (CAC), in prognostic assessments has been difficult to determine, partly due to greater challenge in performing standardized TAC assessments. <b>OBJECTIVE.</b> The purpose of this study was to evaluate long-term prognostic implications of TAC assessed using artificial intelligence (AI)-based quantification on routine chest CT in a screening population. <b>METHODS.</b> This retrospective study included 7404 asymptomatic individuals (median age, 53.9 years; 5875 men, 1529 women) who underwent nongated noncontrast chest CT as part of a national general health screening program at one of two centers from January 2007 to December 2014. A commercial AI program quantified TAC and CAC using Agatston scores, which were stratified into categories. Radiologists manually quantified TAC and CAC in 2567 examinations. The role of AI-based TAC categories in predicting major adverse cardiovascular events (MACE) and all-cause mortality (ACM), independent of AI-based CAC categories as well as clinical and laboratory variables, was assessed by multivariable Cox proportional hazards models using data from both centers and concordance statistics from prognostic models developed and tested using center 1 and center 2 data, respectively. <b>RESULTS.</b> AI-based and manual quantification showed excellent agreement for TAC and CAC (concordance correlation coefficient: 0.967 and 0.895, respectively). The median observation periods were 7.5 years for MACE (383 events in 5342 individuals) and 11.0 years for ACM (292 events in 7404 individuals). When adjusted for AI-based CAC categories along with clinical and laboratory variables, the risk for MACE was not independently associated with any AI-based TAC category; risk of ACM was independently associated with AI-based TAC score of 1001-3000 (HR = 2.14, <i>p</i> = .02) but not with other AI-based TAC categories. When prognostic models were tested, the addition of AI-based TAC categories did not improve model fit relative to models containing clinical variables, laboratory variables, and AI-based CAC categories for MACE (concordance index [C-index] = 0.760-0.760, <i>p</i> = .81) or ACM (C-index = 0.823-0.830, <i>p</i> = .32). <b>CONCLUSION.</b> The addition of TAC to models containing CAC provided limited improvement in risk prediction in an asymptomatic screening population undergoing CT. <b>CLINICAL IMPACT.</b> AI-based quantification provides a standardized approach for better understanding the potential role of TAC as a predictive imaging biomarker.

Effect of contrast enhancement on diagnosis of interstitial lung abnormality in automatic quantitative CT measurement.

Choi J, Ahn Y, Kim Y, Noh HN, Do KH, Seo JB, Lee SM

pubmed logopapersJun 3 2025
To investigate the effect of contrast enhancement on the diagnosis of interstitial lung abnormalities (ILA) in automatic quantitative CT measurement in patients with paired pre- and post-contrast scans. Patients who underwent chest CT for thoracic surgery between April 2017 and December 2020 were retrospectively analyzed. ILA quantification was performed using deep learning-based automated software. Cases were categorized as ILA or non-ILA according to the Fleischner Society's definition, based on the quantification results or radiologist assessment (reference standard). Measurement variability, agreement, and diagnostic performance between the pre- and post-contrast scans were evaluated. In 1134 included patients, post-contrast scans quantified a slightly larger volume of nonfibrotic ILA (mean difference: -0.2%), due to increased ground-glass opacity and reticulation volumes (-0.2% and -0.1%), whereas the fibrotic ILA volume remained unchanged (0.0%). ILA was diagnosed in 15 (1.3%), 22 (1.9%), and 40 (3.5%) patients by pre- and post-contrast scans and radiologists, respectively. The agreement between the pre- and post-contrast scans was substantial (κ = 0.75), but both pre-contrast (κ = 0.46) and post-contrast (κ = 0.54) scans demonstrated moderate agreement with the radiologist. The sensitivity for ILA (32.5% vs. 42.5%, p = 0.221) and specificity for non-ILA (99.8% vs. 99.5%, p = 0.248) were comparable between pre- and post-contrast scans. Radiologist's reclassification for equivocal ILA due to unilateral abnormalities increased the sensitivity for ILA (67.5% and 75.0%, respectively) in both pre- and post-contrast scans. Applying automated quantification on post-contrast scans appears to be acceptable in terms of agreement and diagnostic performance; however, radiologists may need to improve sensitivity reclassifying equivocal ILA. Question The effect of contrast enhancement on the automated quantification of interstitial lung abnormality (ILA) remains unknown. Findings Automated quantification measured slightly larger ground-glass opacity and reticulation volumes on post-contrast scans than on pre-contrast scans; however, contrast enhancement did not affect the sensitivity for interstitial lung abnormality. Clinical relevance Applying automated quantification on post-contrast scans appears to be acceptable in terms of agreement and diagnostic performance.

A first-of-its-kind two-body statistical shape model of the arthropathic shoulder: enhancing biomechanics and surgical planning.

Blackman J, Giles JW

pubmed logopapersJun 3 2025
Statistical Shape Models are machine learning tools in computational orthopedics that enable the study of anatomical variability and the creation of synthetic models for pathogenetic analysis and surgical planning. Current models of the glenohumeral joint either describe individual bones or are limited to non-pathologic datasets, failing to capture coupled shape variation in arthropathic anatomy. We aimed to develop a novel combined scapula-proximal-humerus model applicable to clinical populations. Preoperative computed tomography scans from 45 Reverse Total Shoulder Arthroplasty patients were used to generate three-dimensional models of the scapula and proximal humerus. Correspondence point clouds were combined into a two-body shape model using Principal Component Analysis. Individual scapula-only and proximal-humerus-only shape models were also created for comparison. The models were validated using compactness, specificity, generalization ability, and leave-one-out cross-validation. The modes of variation for each model were also compared. The combined model was described using eigenvector decomposition into single body models. The models were further compared in their ability to predict the shape of one body when given the shape of its counterpart, and the generation of diverse realistic synthetic pairs de novo. The scapula and proximal-humerus models performed comparably to previous studies with median average leave-one-out cross-validation errors of 1.08 mm (IQR: 0.359 mm), and 0.521 mm (IQR: 0.111 mm); the combined model was similar with median error of 1.13 mm (IQR: 0.239 mm). The combined model described coupled variations between the shapes equalling 43.2% of their individual variabilities, including the relationship between glenoid and humeral head erosions. The combined model outperformed the individual models generatively with reduced missing shape prediction bias (> 10%) and uniformly diverse shape plausibility (uniformity p-value < .001 vs. .59). This study developed the first two-body scapulohumeral shape model that captures coupled variations in arthropathic shoulder anatomy and the first proximal-humeral statistical model constructed using a clinical dataset. While single-body models are effective for descriptive tasks, combined models excel in generating joint-level anatomy. This model can be used to augment computational analyses of synthetic populations investigating shoulder biomechanics and surgical planning.

Artificial intelligence for detecting traumatic intracranial haemorrhage with CT: A workflow-oriented implementation.

Abed S, Hergan K, Pfaff J, Dörrenberg J, Brandstetter L, Gradl J

pubmed logopapersJun 3 2025
The objective of this study was to assess the performance of an artificial intelligence (AI) algorithm in detecting intracranial haemorrhages (ICHs) on non-contrast CT scans (NCCT). Another objective was to gauge the department's acceptance of said algorithm. Surveys conducted at three and nine months post-implementation revealed an increase in radiologists' acceptance of the AI tool with an increasing performance. However, a significant portion still preferred an additional physician given comparable cost. Our findings emphasize the importance of careful software implementation into a robust IT architecture.

FPA-based weighted average ensemble of deep learning models for classification of lung cancer using CT scan images.

Zhou L, Jain A, Dubey AK, Singh SK, Gupta N, Panwar A, Kumar S, Althaqafi TA, Arya V, Alhalabi W, Gupta BB

pubmed logopapersJun 3 2025
Cancer is among the most dangerous diseases contributing to rising global mortality rates. Lung cancer, particularly adenocarcinoma, is one of the deadliest forms and severely impacts human life. Early diagnosis and appropriate treatment significantly increase patient survival rates. Computed Tomography (CT) is a preferred imaging modality for detecting lung cancer, as it offers detailed visualization of tumor structure and growth. With the advancement of deep learning, the automated identification of lung cancer from CT images has become increasingly effective. This study proposes a novel lung cancer detection framework using a Flower Pollination Algorithm (FPA)-based weighted ensemble of three high-performing pretrained Convolutional Neural Networks (CNNs): VGG16, ResNet101V2, and InceptionV3. Unlike traditional ensemble approaches that assign static or equal weights, the FPA adaptively optimizes the contribution of each CNN based on validation performance. This dynamic weighting significantly enhances diagnostic accuracy. The proposed FPA-based ensemble achieved an impressive accuracy of 98.2%, precision of 98.4%, recall of 98.6%, and an F1 score of 0.985 on the test dataset. In comparison, the best individual CNN (VGG16) achieved 94.6% accuracy, highlighting the superiority of the ensemble approach. These results confirm the model's effectiveness in accurate and reliable cancer diagnosis. The proposed study demonstrates the potential of deep learning and neural networks to transform cancer diagnosis, helping early detection and improving treatment outcomes.

Comparisons of AI automated segmentation techniques to manual segmentation techniques of the maxilla and maxillary sinus for CT or CBCT scans-A Systematic review.

Park JH, Hamimi M, Choi JJE, Figueredo CMS, Cameron MA

pubmed logopapersJun 3 2025
Accurate segmentation of the maxillary sinus from medical images is essential for diagnostic purposes and surgical planning. Manual segmentation of the maxillary sinus, while the gold standard, is time consuming and requires adequate training. To overcome this problem, AI enabled automatic segmentation software's developed. The purpose of this review is to systematically analyse the current literature to investigate the accuracy and efficiency of automatic segmentation techniques of the maxillary sinus to manual segmentation. A systematic approach to perform a thorough analysis of the existing literature using PRISMA guidelines. Data for this study was obtained from Pubmed, Medline, Embase, and Google Scholar databases. The inclusion and exclusion eligibility criteria were used to shortlist relevant studies. The sample size, anatomical structures segmented, experience of operators, type of manual segmentation software used, type of automatic segmentation software used, statistical comparative method used, and length of time of segmentation were analysed. This systematic review presents 10 studies that compared the accuracy and efficiency of automatic segmentation of the maxillary sinus to manual segmentation. All the studies included in this study were found to have a low risk of bias. Samples sizes ranged from 3 to 144, a variety of operators were used to manually segment the CBCT and segmentation was made primarily to 3D slicer and Mimics software. The comparison was primarily made to Unet architecture softwares, with the dice-coefficient being the primary means of comparison. This systematic review showed that automatic segmentation technique was consistently faster than manual segmentation techniques and over 90% accurate when compared to the gold standard of manual segmentation.

Deep learning model for differentiating thyroid eye disease and orbital myositis on computed tomography (CT) imaging.

Ha SK, Lin LY, Shi M, Wang M, Han JY, Lee NG

pubmed logopapersJun 3 2025
To develop a deep learning model using orbital computed tomography (CT) imaging to accurately distinguish thyroid eye disease (TED) and orbital myositis, two conditions with overlapping clinical presentations. Retrospective, single-center cohort study spanning 12 years including normal controls, TED, and orbital myositis patients with orbital imaging and examination by an oculoplastic surgeon. A deep learning model employing a Visual Geometry Group-16 network was trained on various binary combinations of TED, orbital myositis, and controls using single slices of coronal orbital CT images. A total of 1628 images from 192 patients (110 TED, 51 orbital myositis, 31 controls) were included. The primary model comparing orbital myositis and TED had accuracy of 98.4% and area under the receiver operating characteristic curve (AUC) of 0.999. In detecting orbital myositis, it had a sensitivity, specificity, and F1 score of 0.964, 0.994, and 0.984, respectively. Deep learning models can differentiate TED and orbital myositis based on a single, coronal orbital CT image with high accuracy. Their ability to distinguish these conditions based not only on extraocular muscle enlargement but also other salient features suggests potential applications in diagnostics and treatment beyond these conditions.

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

Jaiswal R, Pivodic A, Zoulakis M, Axelsson KF, Litsne H, Johansson L, Lorentzon M

pubmed logopapersJun 3 2025
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from HR-pQCT. In a prospective cohort study of 3028 community-dwelling women aged 75-80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by DXA and HR-pQCT. Medical records, a regional x-ray archive, and registers were used to identify incident fractures and death. Prediction models for hip, major osteoporotic fracture (MOF), and any fracture were developed using Cox proportional hazards regression and machine learning algorithms (neural network, random forest, ensemble, and Extreme Gradient Boosting). In the 2856 (94.3%) women with complete HR-pQCT data at 2 tibia sites (distal and ultra-distal), the median follow-up period was 8.0 yr, and 217 hip, 746 MOF, and 1008 any type of incident fracture occurred. In Cox regression models adjusted for age, BMI, clinical risk factors (CRFs), and FN BMD, the strongest predictors of hip fracture were tibia total volumetric BMD and cortical thickness. The performance of the Cox regression-based prediction models for hip fracture was significantly improved by HR-pQCT (time-dependent AUC; area under receiver operating characteristic curve at 5 yr of follow-up 0.75 [0.64-0.85]), compared to a reference model including CRFs and FN BMD (AUC = 0.71 [0.58-0.81], p < .001) and a Fracture Risk Assessment Tool risk score model (AUC = 0.70 [0.60-0.80], p < .001). The Cox regression model for hip fracture had a significantly higher accuracy than the neural network-based model, the best-performing machine learning algorithm, at clinically relevant sensitivity levels. We conclude that the addition of HR-pQCT parameters improves the prediction of hip fractures in a cohort of older Swedish women.

Radiomics and deep learning characterisation of liver malignancies in CT images - A systematic review.

Yahaya BS, Osman ND, Karim NKA, Appalanaido GK, Isa IS

pubmed logopapersJun 3 2025
Computed tomography (CT) has been widely used as an effective tool for liver imaging due to its high spatial resolution, and ability to differentiate tissue densities, which contributing to comprehensive image analysis. Recent advancements in artificial intelligence (AI) promoted the role of Machine Learning (ML) in managing liver cancers by predicting or classifying tumours using mathematical algorithms. Deep learning (DL), a subset of ML, expanded these capabilities through convolutional neural networks (CNN) that analyse large data automatically. This review examines methods, achievements, limitations, and performance outcomes of ML-based radiomics and DL models for liver malignancies from CT imaging. A systematic search for full-text articles in English on CT radiomics and DL in liver cancer analysis was conducted in PubMed, Scopus, Science Citation Index, and Cochrane Library databases between 2020 and 2024 using the keywords; machine learning, radiomics, deep learning, computed tomography, liver cancer and associated MESH terms. PRISMA guidelines were used to identify and screen studies for inclusion. A total of 49 studies were included consisting of 17 Radiomics, 24 DL, and 8 combined DL/Radiomics studies. Radiomics has been predominantly utilised for predictive analysis, while DL has been extensively applied to automatic liver and tumour segmentation with a surge of a recent increase in studies integrating both techniques. Despite the growing popularity of DL methods, classical radiomics models are still relevant and often preferred over DL methods when performance is similar, due to lower computational and data needs. Performance of models keep improving, but challenges like data scarcity and lack of standardised protocols persists.
Page 108 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.