Effect of contrast enhancement on diagnosis of interstitial lung abnormality in automatic quantitative CT measurement.
Authors
Affiliations (5)
Affiliations (5)
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
- Department of Biomedical Engineering, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Health Screening and Promotion Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea. [email protected].
Abstract
To investigate the effect of contrast enhancement on the diagnosis of interstitial lung abnormalities (ILA) in automatic quantitative CT measurement in patients with paired pre- and post-contrast scans. Patients who underwent chest CT for thoracic surgery between April 2017 and December 2020 were retrospectively analyzed. ILA quantification was performed using deep learning-based automated software. Cases were categorized as ILA or non-ILA according to the Fleischner Society's definition, based on the quantification results or radiologist assessment (reference standard). Measurement variability, agreement, and diagnostic performance between the pre- and post-contrast scans were evaluated. In 1134 included patients, post-contrast scans quantified a slightly larger volume of nonfibrotic ILA (mean difference: -0.2%), due to increased ground-glass opacity and reticulation volumes (-0.2% and -0.1%), whereas the fibrotic ILA volume remained unchanged (0.0%). ILA was diagnosed in 15 (1.3%), 22 (1.9%), and 40 (3.5%) patients by pre- and post-contrast scans and radiologists, respectively. The agreement between the pre- and post-contrast scans was substantial (κ = 0.75), but both pre-contrast (κ = 0.46) and post-contrast (κ = 0.54) scans demonstrated moderate agreement with the radiologist. The sensitivity for ILA (32.5% vs. 42.5%, p = 0.221) and specificity for non-ILA (99.8% vs. 99.5%, p = 0.248) were comparable between pre- and post-contrast scans. Radiologist's reclassification for equivocal ILA due to unilateral abnormalities increased the sensitivity for ILA (67.5% and 75.0%, respectively) in both pre- and post-contrast scans. Applying automated quantification on post-contrast scans appears to be acceptable in terms of agreement and diagnostic performance; however, radiologists may need to improve sensitivity reclassifying equivocal ILA. Question The effect of contrast enhancement on the automated quantification of interstitial lung abnormality (ILA) remains unknown. Findings Automated quantification measured slightly larger ground-glass opacity and reticulation volumes on post-contrast scans than on pre-contrast scans; however, contrast enhancement did not affect the sensitivity for interstitial lung abnormality. Clinical relevance Applying automated quantification on post-contrast scans appears to be acceptable in terms of agreement and diagnostic performance.