Sort by:
Page 100 of 1071070 results

Deep learning for Parkinson's disease classification using multimodal and multi-sequences PET/MR images.

Chang Y, Liu J, Sun S, Chen T, Wang R

pubmed logopapersMay 9 2025
We aimed to use deep learning (DL) techniques to accurately differentiate Parkinson's disease (PD) from multiple system atrophy (MSA), which share similar clinical presentations. In this retrospective analysis, 206 patients who underwent PET/MR imaging at the Chinese PLA General Hospital were included, having been clinically diagnosed with either PD or MSA; an additional 38 healthy volunteers served as normal controls (NC). All subjects were randomly assigned to the training and test sets at a ratio of 7:3. The input to the model consists of 10 two-dimensional (2D) slices in axial, coronal, and sagittal planes from multi-modal images. A modified Residual Block Network with 18 layers (ResNet18) was trained with different modal images, to classify PD, MSA, and NC. A four-fold cross-validation method was applied in the training set. Performance evaluations included accuracy, precision, recall, F1 score, Receiver operating characteristic (ROC), and area under the ROC curve (AUC). Six single-modal models and seven multi-modal models were trained and tested. The PET models outperformed MRI models. The <sup>11</sup>C-methyl-N-2β-carbomethoxy-3β-(4-fluorophenyl)-tropanel (<sup>11</sup>C-CFT) -Apparent Diffusion Coefficient (ADC) model showed the best classification, which resulted in 0.97 accuracy, 0.93 precision, 0.95 recall, 0.92 F1, and 0.96 AUC. In the test set, the accuracy, precision, recall, and F1 score of the CFT-ADC model were 0.70, 0.73, 0.93, and 0.82, respectively. The proposed DL method shows potential as a high-performance assisting tool for the accurate diagnosis of PD and MSA. A multi-modal and multi-sequence model could further enhance the ability to classify PD.

Neural Network-based Automated Classification of 18F-FDG PET/CT Lesions and Prognosis Prediction in Nasopharyngeal Carcinoma Without Distant Metastasis.

Lv Y, Zheng D, Wang R, Zhou Z, Gao Z, Lan X, Qin C

pubmed logopapersMay 9 2025
To evaluate the diagnostic performance of the PET Assisted Reporting System (PARS) in nasopharyngeal carcinoma (NPC) patients without distant metastasis, and to investigate the prognostic significance of the metabolic parameters. Eighty-three NPC patients who underwent pretreatment 18F-FDG PET/CT were retrospectively collected. First, the sensitivity, specificity, and accuracy of PARS for diagnosing malignant lesions were calculated, using histopathology as the gold standard. Next, metabolic parameters of the primary tumor were derived using both PARS and manual segmentation. The differences and consistency between the 2 methods were analyzed. Finally, the prognostic value of PET metabolic parameters was evaluated. Prognostic analysis of progression-free survival (PFS) and overall survival (OS) was conducted. PARS demonstrated high patient-based accuracy (97.2%), sensitivity (88.9%), and specificity (97.4%), and 96.7%, 84.0%, and 96.9% based on lesions. Manual segmentation yielded higher metabolic tumor volume (MTV) and total lesion glycolysis (TLG) than PARS. Metabolic parameters from both methods were highly correlated and consistent. ROC analysis showed metabolic parameters exhibited differences in prognostic prediction, but generally performed well in predicting 3-year PFS and OS overall. MTV and age were independent prognostic factors; Cox proportional-hazards models incorporating them showed significant predictive improvements when combined. Kaplan-Meier analysis confirmed better prognosis in the low-risk group based on combined indicators (χ² = 42.25, P < 0.001; χ² = 20.44, P < 0.001). Preliminary validation of PARS in NPC patients without distant metastasis shows high diagnostic sensitivity and accuracy for lesion identification and classification, and metabolic parameters correlate well with manual. MTV reflects prognosis, and its combination with age enhances prognostic prediction and risk stratification.

Application of Artificial Intelligence to Deliver Healthcare From the Eye.

Weinreb RN, Lee AY, Baxter SL, Lee RWJ, Leng T, McConnell MV, El-Nimri NW, Rhew DC

pubmed logopapersMay 8 2025
Oculomics is the science of analyzing ocular data to identify, diagnose, and manage systemic disease. This article focuses on prescreening, its use with retinal images analyzed by artificial intelligence (AI), to identify ocular or systemic disease or potential disease in asymptomatic individuals. The implementation of prescreening in a coordinated care system, defined as Healthcare From the Eye prescreening, has the potential to improve access, affordability, equity, quality, and safety of health care on a global level. Stakeholders include physicians, payers, policymakers, regulators and representatives from industry, government, and data privacy sectors. The combination of AI analysis of ocular data with automated technologies that capture images during routine eye examinations enables prescreening of large populations for chronic disease. Retinal images can be acquired during either a routine eye examination or in settings outside of eye care with readily accessible, safe, quick, and noninvasive retinal imaging devices. The outcome of such an examination can then be digitally communicated across relevant stakeholders in a coordinated fashion to direct a patient to screening and monitoring services. Such an approach offers the opportunity to transform health care delivery and improve early disease detection, improve access to care, enhance equity especially in rural and underserved communities, and reduce costs. With effective implementation and collaboration among key stakeholders, this approach has the potential to contribute to an equitable and effective health care system.

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Yan Y, Liu Y, Wang Y, Jiang T, Xie J, Zhou Y, Liu X, Yan M, Zheng Q, Xu H, Chen J, Sui L, Chen C, Ru R, Wang K, Zhao A, Li S, Zhu Y, Zhang Y, Wang VY, Xu D

pubmed logopapersMay 8 2025
Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical Diagnosis Model (PTs-HDM) for preoperative identification and grading. Ultrasound images from five hospitals were retrospectively collected, with all patients having undergone surgical pathological confirmation of either PTs or fibroadenomas (FAs). PTs-HDM follows a two-stage classification: first distinguishing PTs from FAs, then grading PTs into benign or borderline/malignant. Model performance metrics including AUC and accuracy were quantitatively evaluated. A comparative analysis was conducted between the algorithm's diagnostic capabilities and those of radiologists with varying clinical experience within an external validation cohort. Through the provision of PTs-HDM's automated classification outputs and associated thermal activation mapping guidance, we systematically assessed the enhancement in radiologists' diagnostic concordance and classification accuracy. A total of 712 patients were included. On the external test set, PTs-HDM achieved an AUC of 0.883, accuracy of 87.3% for PT vs. FA classification. Subgroup analysis showed high accuracy for tumors < 2 cm (90.9%). In hierarchical classification, the model obtained an AUC of 0.856 and accuracy of 80.9%. Radiologists' performance improved with PTs-HDM assistance, with binary classification accuracy increasing from 82.7%, 67.7%, and 64.2-87.6%, 76.6%, and 82.1% for senior, attending, and resident radiologists, respectively. Their hierarchical classification AUCs improved from 0.566 to 0.827 to 0.725-0.837. PTs-HDM also enhanced inter-radiologist consistency, increasing Kappa values from - 0.05 to 0.41 to 0.12 to 0.65, and the intraclass correlation coefficient from 0.19 to 0.45. PTs-HDM shows strong diagnostic performance, especially for small lesions, and improves radiologists' accuracy across all experience levels, bridging diagnostic gaps and providing reliable support for PTs' hierarchical diagnosis.

Effective data selection via deep learning processes and corresponding learning strategies in ultrasound image classification.

Lee H, Kwak JY, Lee E

pubmed logopapersMay 8 2025
In this study, we propose a novel approach to enhancing transfer learning by optimizing data selection through deep learning techniques and corresponding innovative learning strategies. This method is particularly beneficial when the available dataset has reached its limit and cannot be further expanded. Our approach focuses on maximizing the use of existing data to improve learning outcomes which offers an effective solution for data-limited applications in medical imaging classification. The proposed method consists of two stages. In the first stage, an original network performs the initial classification. When the original network exhibits low confidence in its predictions, ambiguous classifications are passed to a secondary decision-making step involving a newly trained network, referred to as the True network. The True network shares the same architecture as the original network but is trained on a subset of the original dataset that is selected based on consensus among multiple independent networks. It is then used to verify the classification results of the original network, identifying and correcting any misclassified images. To evaluate the effectiveness of our approach, we conducted experiments using thyroid nodule ultrasound images with the ResNet101 and Vision Transformer architectures along with eleven other pre-trained neural networks. The proposed method led to performance improvements across all five key metrics, accuracy, sensitivity, specificity, F1-score, and AUC, compared to using only the original or True networks in ResNet101. Additionally, the True network showed strong performance when applied to the Vision Transformer and similar enhancements were observed across multiple convolutional neural network architectures. Furthermore, to assess the robustness and adaptability of our method across different medical imaging modalities, we applied it to dermoscopic images and observed similar performance enhancements. These results provide evidence of the effectiveness of our approach in improving transfer learning-based medical image classification without requiring additional training data.

Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management.

Chilaca-Rosas MF, Contreras-Aguilar MT, Pallach-Loose F, Altamirano-Bustamante NF, Salazar-Calderon DR, Revilla-Monsalve C, Heredia-Gutiérrez JC, Conde-Castro B, Medrano-Guzmán R, Altamirano-Bustamante MM

pubmed logopapersMay 8 2025
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.

Radiomics-based machine learning in prediction of response to neoadjuvant chemotherapy in osteosarcoma: A systematic review and meta-analysis.

Salimi M, Houshi S, Gholamrezanezhad A, Vadipour P, Seifi S

pubmed logopapersMay 8 2025
Osteosarcoma (OS) is the most common primary bone malignancy, and neoadjuvant chemotherapy (NAC) improves survival rates. However, OS heterogeneity results in variable treatment responses, highlighting the need for reliable, non-invasive tools to predict NAC response. Radiomics-based machine learning (ML) offers potential for identifying imaging biomarkers to predict treatment outcomes. This systematic review and meta-analysis evaluated the accuracy and reliability of radiomics models for predicting NAC response in OS. A systematic search was conducted in PubMed, Embase, Scopus, and Web of Science up to November 2024. Studies using radiomics-based ML for NAC response prediction in OS were included. Pooled sensitivity, specificity, and AUC for training and validation cohorts were calculated using bivariate random-effects modeling, with clinical-combined models analyzed separately. Quality assessment was performed using the QUADAS-2 tool, radiomics quality score (RQS), and METRICS scores. Sixteen studies were included, with 63 % using MRI and 37 % using CT. Twelve studies, comprising 1639 participants, were included in the meta-analysis. Pooled metrics for training cohorts showed an AUC of 0.93, sensitivity of 0.89, and specificity of 0.85. Validation cohorts achieved an AUC of 0.87, sensitivity of 0.81, and specificity of 0.82. Clinical-combined models outperformed radiomics-only models. The mean RQS score was 9.44 ± 3.41, and the mean METRICS score was 60.8 % ± 17.4 %. Radiomics-based ML shows promise for predicting NAC response in OS, especially when combined with clinical indicators. However, limitations in external validation and methodological consistency must be addressed.

Machine learning-based approaches for distinguishing viral and bacterial pneumonia in paediatrics: A scoping review.

Rickard D, Kabir MA, Homaira N

pubmed logopapersMay 8 2025
Pneumonia is the leading cause of hospitalisation and mortality among children under five, particularly in low-resource settings. Accurate differentiation between viral and bacterial pneumonia is essential for guiding appropriate treatment, yet it remains challenging due to overlapping clinical and radiographic features. Advances in machine learning (ML), particularly deep learning (DL), have shown promise in classifying pneumonia using chest X-ray (CXR) images. This scoping review summarises the evidence on ML techniques for classifying viral and bacterial pneumonia using CXR images in paediatric patients. This scoping review was conducted following the Joanna Briggs Institute methodology and the PRISMA-ScR guidelines. A comprehensive search was performed in PubMed, Embase, and Scopus to identify studies involving children (0-18 years) with pneumonia diagnosed through CXR, using ML models for binary or multiclass classification. Data extraction included ML models, dataset characteristics, and performance metrics. A total of 35 studies, published between 2018 and 2025, were included in this review. Of these, 31 studies used the publicly available Kermany dataset, raising concerns about overfitting and limited generalisability to broader, real-world clinical populations. Most studies (n=33) used convolutional neural networks (CNNs) for pneumonia classification. While many models demonstrated promising performance, significant variability was observed due to differences in methodologies, dataset sizes, and validation strategies, complicating direct comparisons. For binary classification (viral vs bacterial pneumonia), a median accuracy of 92.3% (range: 80.8% to 97.9%) was reported. For multiclass classification (healthy, viral pneumonia, and bacterial pneumonia), the median accuracy was 91.8% (range: 76.8% to 99.7%). Current evidence is constrained by a predominant reliance on a single dataset and variability in methodologies, which limit the generalisability and clinical applicability of findings. To address these limitations, future research should focus on developing diverse and representative datasets while adhering to standardised reporting guidelines. Such efforts are essential to improve the reliability, reproducibility, and translational potential of machine learning models in clinical settings.

Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning.

Bai X, Feng M, Ma W, Wang S

pubmed logopapersMay 8 2025
This study proposes a novel approach to predict the efficacy of bevacizumab (BEV) in treating peritumoral edema in metastatic brain tumor patients by integrating advanced machine learning (ML) techniques with comprehensive imaging and clinical data. A retrospective analysis was performed on 300 patients who received BEV treatment from September 2013 to January 2024. The dataset incorporated 13 predictive features: 8 clinical variables and 5 radiological variables. The dataset was divided into a training set (70%) and a test set (30%) using stratified sampling. Data preprocessing was carried out through methods such as handling missing values with the MICE method, detecting and adjusting outliers, and feature scaling. Four algorithms, namely Random Forest (RF), Logistic Regression, Gradient Boosting Tree, and Naive Bayes, were selected to construct binary classification models. A tenfold cross-validation strategy was implemented during training, and techniques like regularization, hyperparameter optimization, and oversampling were used to mitigate overfitting. The RF model demonstrated superior performance, achieving an accuracy of 0.89, a precision of 0.94, F1-score of 0.92, with both AUC-ROC and AUC-PR values reaching 0.91. Feature importance analysis consistently identified edema volume as the most significant predictor, followed by edema index, patient age, and tumor volume. Traditional multivariate logistic regression corroborated these findings, confirming that edema volume and edema index were independent predictors (p < 0.01). Our results highlight the potential of ML-driven predictive models in optimizing BEV treatment selection, reducing unnecessary treatment risks, and improving clinical decision-making in neuro-oncology.

Construction of risk prediction model of sentinel lymph node metastasis in breast cancer patients based on machine learning algorithm.

Yang Q, Liu C, Wang Y, Dong G, Sun J

pubmed logopapersMay 8 2025
The aim of this study was to develop and validate a machine learning (ML) based prediction model for sentinel lymph node metastasis in breast cancer to identify patients with a high risk of sentinel lymph node metastasis. In this machine learning study, we retrospectively collected 225 female breast cancer patients who underwent sentinel lymph node biopsy (SLNB). Feature screening was performed using the logistic regression analysis. Subsequently, five ML algorithms, namely LOGIT, LASSO, XGBOOST, RANDOM FOREST model and GBM model were employed to train and develop an ML model. In addition, model interpretation was performed by the Shapley Additive Explanations (SHAP) analysis to clarify the importance of each feature of the model and its decision basis. Combined univariate and multivariate logistic regression analysis, identified Multifocal, LVI, Maximum Diameter, Shape US, Maximum Cortical Thickness as significant predictors. We than successfully leveraged machine learning algorithms, particularly the RANDOM FOREST model, to develop a predictive model for sentinel lymph node metastasis in breast cancer. Finally, the SHAP method identified Maximum Diameter and Maximum Cortical Thickness as the primary decision factors influencing the ML model's predictions. With the integration of pathological and imaging characteristics, ML algorithm can accurately predict sentinel lymph node metastasis in breast cancer patients. The RANDOM FOREST model showed ideal performance. With the incorporation of these models in the clinic, can helpful for clinicians to identify patients at risk of sentinel lymph node metastasis of breast cancer and make more reasonable treatment decisions.
Page 100 of 1071070 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.